Knot Theory Invariants in Algebraic Geometry

Laurentiu Maxim

University of Wisconsin-Madison

- Motivation
- Plane curve complements
 - Infinite cyclic invariants: Alexander polynomials
 - Universal abelian invariants: Characteristic varieties
 - L²-Betti numbers and Cochran-Harvey invariants
- 3 Examples

 Serre's problem: Find restrictions imposed on a group by the fact that it can appear as fundamental group of a complex algebraic manifold.

- Serre's problem: Find restrictions imposed on a group by the fact that it can appear as fundamental group of a complex algebraic manifold.
- Most finitely presented groups cannot be *projective groups*, i.e., π_1 of a complex *projective* manifold. E.g., free abelian groups of *odd* rank (Hint: use Hodge theory).

- Serre's problem: Find restrictions imposed on a group by the fact that it can appear as fundamental group of a complex algebraic manifold.
- Most finitely presented groups cannot be *projective groups*, i.e., π_1 of a complex *projective* manifold. E.g., free abelian groups of *odd* rank (Hint: use Hodge theory).
- By contrast, Taubes (1992) showed that every finitely presented group is π_1 of a compact complex 3-manifold.

- Serre's problem: Find restrictions imposed on a group by the fact that it can appear as fundamental group of a complex algebraic manifold.
- Most finitely presented groups cannot be *projective groups*, i.e., π_1 of a complex *projective* manifold. E.g., free abelian groups of *odd* rank (Hint: use Hodge theory).
- By contrast, Taubes (1992) showed that every finitely presented group is π_1 of a compact complex 3-manifold.
- Morgan (1978), Kapovich-Milson (1997), etc. found infinitely many non-isomorphic examples of *non-quasiprojective groups*.

• Consider only complex algebraic manifolds which are complements to hypersurfaces in \mathbb{C}^n (or in \mathbb{CP}^n).

- Consider only complex algebraic manifolds which are complements to hypersurfaces in \mathbb{C}^n (or in \mathbb{CP}^n).
- Reduction to a low-dimensional topology problem: by a Zariski-Lefschetz type theorem, possible π_1 's of complements to hypersurfaces in \mathbb{C}^n are precisely the fundamental groups of complements to plane curves $\mathcal{C} = \{f(x,y) = 0\} \subset \mathbb{C}^2$.

- Consider only complex algebraic manifolds which are complements to hypersurfaces in \mathbb{C}^n (or in \mathbb{CP}^n).
- Reduction to a low-dimensional topology problem: by a Zariski-Lefschetz type theorem, possible π_1 's of complements to hypersurfaces in \mathbb{C}^n are precisely the fundamental groups of complements to plane curves $\mathcal{C} = \{f(x,y) = 0\} \subset \mathbb{C}^2$.
- Question: What groups can be π_1 of complements to curves in \mathbb{C}^2 ? What obstruction are there? Similarly for \mathbb{CP}^2 .

- Consider only complex algebraic manifolds which are complements to hypersurfaces in \mathbb{C}^n (or in \mathbb{CP}^n).
- Reduction to a low-dimensional topology problem: by a Zariski-Lefschetz type theorem, possible π_1 's of complements to hypersurfaces in \mathbb{C}^n are precisely the fundamental groups of complements to plane curves $\mathcal{C} = \{f(x,y) = 0\} \subset \mathbb{C}^2$.
- Question: What groups can be π_1 of complements to curves in \mathbb{C}^2 ? What obstruction are there? Similarly for \mathbb{CP}^2 .
- E.g., many knot groups cannot be realized as $\pi_1(\mathbb{C}^2 \mathcal{C})$ for a curve \mathcal{C} .

• Let $C = \{f(x, y) = 0\}$ be a reduced curve in \mathbb{C}^2 of degree d.

- Let $C = \{f(x, y) = 0\}$ be a reduced curve in \mathbb{C}^2 of degree d.
- Set $X = \mathbb{C}^2 \mathcal{C}$, with $G = \pi_1(X)$.

- Let $C = \{f(x, y) = 0\}$ be a reduced curve in \mathbb{C}^2 of degree d.
- Set $X = \mathbb{C}^2 \mathcal{C}$, with $G = \pi_1(X)$.
- $H_1(G) = H_1(X) = \mathbb{Z}^s$, for s = # of irred. components of \mathcal{C} .

- Let $C = \{f(x, y) = 0\}$ be a reduced curve in \mathbb{C}^2 of degree d.
- Set $X = \mathbb{C}^2 \mathcal{C}$, with $G = \pi_1(X)$.
- $H_1(G) = H_1(X) = \mathbb{Z}^s$, for s = # of irred. components of \mathcal{C} .
- If the projective completion $\overline{\mathcal{C}}$ of \mathcal{C} is *transversal* to the line at infinity, there is a central extension:

$$0 o \mathbb{Z} o G o \pi_1(\mathbb{CP}^2 \setminus \overline{\mathcal{C}}) o 0.$$

- Let $C = \{f(x, y) = 0\}$ be a reduced curve in \mathbb{C}^2 of degree d.
- Set $X = \mathbb{C}^2 \mathcal{C}$, with $G = \pi_1(X)$.
- $H_1(G) = H_1(X) = \mathbb{Z}^s$, for s = # of irred. components of \mathcal{C} .
- If the projective completion $\overline{\mathcal{C}}$ of \mathcal{C} is *transversal* to the line at infinity, there is a central extension:

$$0 \to \mathbb{Z} \to G \to \pi_1(\mathbb{CP}^2 \setminus \bar{\mathcal{C}}) \to 0.$$

• Important obstructions on $G = \pi_1(\mathbb{C}^2 \setminus \mathcal{C})$ and on the topology of \mathcal{C} are derived by analyzing various invariants associated to covering spaces of the complement.

•
$$lk: G = \pi_1(\mathbb{C}^2 - \mathcal{C}) \to \mathbb{Z}, \ \alpha \mapsto lk\#(\alpha, \mathcal{C}).$$

- $lk: G = \pi_1(\mathbb{C}^2 \mathcal{C}) \to \mathbb{Z}, \ \alpha \mapsto lk\#(\alpha, \mathcal{C}).$
- $X^c := \text{covering of } X = \mathbb{C}^2 \mathcal{C} \text{ corresponding to } Ker(lk).$

- $lk: G = \pi_1(\mathbb{C}^2 \mathcal{C}) \to \mathbb{Z}, \ \alpha \mapsto lk\#(\alpha, \mathcal{C}).$
- $X^c := \text{covering of } X = \mathbb{C}^2 \mathcal{C} \text{ corresponding to } Ker(lk).$

Theorem (Zariski-Libgober)

 $H_1(X^c;\mathbb{C})$ is a torsion $\mathbb{C}[t,t^{-1}]$ -module.

- $lk: G = \pi_1(\mathbb{C}^2 \mathcal{C}) \to \mathbb{Z}, \ \alpha \mapsto lk\#(\alpha, \mathcal{C}).$
- $X^c := \text{covering of } X = \mathbb{C}^2 \mathcal{C} \text{ corresponding to } \textit{Ker(Ik)}.$

Theorem (Zariski-Libgober)

 $H_1(X^c;\mathbb{C})$ is a torsion $\mathbb{C}[t,t^{-1}]$ -module.

Definition

 $\Delta_{\mathcal{C}}(t) = \operatorname{order} H_1(X^c; \mathbb{C})$ is the Alexander polynomial of \mathcal{C} (or G).

• For each $x \in \operatorname{Sing}(\mathcal{C})$, let $L_x := S_x^3 \cap \mathcal{C}$ be the link of x.

- For each $x \in \operatorname{Sing}(\mathcal{C})$, let $L_x := S_x^3 \cap \mathcal{C}$ be the link of x.
- Milnor: There is a fibration $F_x \hookrightarrow S_x^3 \setminus L_x \to S^1$

- For each $x \in \operatorname{Sing}(\mathcal{C})$, let $L_x := S_x^3 \cap \mathcal{C}$ be the link of x.
- Milnor: There is a fibration $F_x \hookrightarrow S_x^3 \setminus L_x \to S^1$
- The Milnor fibre F_x is homotopy equivalent to a join of circles, their number being equal to the Milnor number $\mu(C, x)$.

- For each $x \in \operatorname{Sing}(\mathcal{C})$, let $L_x := S_x^3 \cap \mathcal{C}$ be the link of x.
- Milnor: There is a fibration $F_x \hookrightarrow S_x^3 \setminus L_x \to S^1$
- The Milnor fibre F_x is homotopy equivalent to a join of circles, their number being equal to the Milnor number $\mu(C, x)$.
- Let $h_x: F_x \to F_x$ be the monodromy homeomorphism

- For each $x \in \operatorname{Sing}(\mathcal{C})$, let $L_x := S_x^3 \cap \mathcal{C}$ be the link of x.
- Milnor: There is a fibration $F_x \hookrightarrow S_x^3 \setminus L_x \to S^1$
- The Milnor fibre F_x is homotopy equivalent to a join of circles, their number being equal to the Milnor number $\mu(C, x)$.
- Let $h_x: F_x \to F_x$ be the monodromy homeomorphism
- The local Alexander polynomial at x is defined by

$$\Delta_{\mathsf{x}}(t) := \det\left(t\mathsf{I} - (\mathsf{h}_{\mathsf{x}})_* : \mathsf{H}_1(\mathsf{F}_{\mathsf{x}}) \to \mathsf{H}_1(\mathsf{F}_{\mathsf{x}})\right)$$

 $\Delta_{\mathcal{C}}(t)$ divides (up to a power of (t-1)) $\prod_{x \in Sing(\mathcal{C})} \Delta_x(t)$

 $\Delta_{\mathcal{C}}(t)$ divides (up to a power of (t-1)) $\prod_{x \in Sing(\mathcal{C})} \Delta_x(t)$

• So the local type of singularities affects the topology of C.

 $\Delta_{\mathcal{C}}(t)$ divides (up to a power of (t-1)) $\prod_{x \in Sing(\mathcal{C})} \Delta_x(t)$

- So the local type of singularities affects the topology of C.
- Zariski showed that the position of singularities has effect on the topology of C.

 $\Delta_{\mathcal{C}}(t)$ divides (up to a power of (t-1)) $\prod_{x \in Sing(\mathcal{C})} \Delta_x(t)$

- So the local type of singularities affects the topology of C.
- Zariski showed that the position of singularities has effect on the topology of C.
- Moreover, $\Delta_{\mathcal{C}}(t)$ is sensitive to the position of singularities (Libgober).

• The zeros of $\Delta_{\mathcal{C}}(t)$ are roots of unity.

- The zeros of $\Delta_{\mathcal{C}}(t)$ are roots of unity.
- Moreover, for a curve C in general position at infinity, the zeros of $\Delta_C(t)$ are roots of unity of order d = deg(C).

- The zeros of $\Delta_{\mathcal{C}}(t)$ are roots of unity.
- Moreover, for a curve C in general position at infinity, the zeros of $\Delta_C(t)$ are roots of unity of order d = deg(C).

- The zeros of $\Delta_{\mathcal{C}}(t)$ are roots of unity.
- Moreover, for a curve C in general position at infinity, the zeros of $\Delta_C(t)$ are roots of unity of order d = deg(C).

Example

• Many knot groups, e.g. that of figure eight knot (whose Alexander polynomial is $t^2 - 3t + 1$), cannot be of the form $\pi_1(\mathbb{C}^2 - \mathcal{C})$.

- The zeros of $\Delta_{\mathcal{C}}(t)$ are roots of unity.
- Moreover, for a curve C in general position at infinity, the zeros of $\Delta_C(t)$ are roots of unity of order d = deg(C).

Example

- Many knot groups, e.g. that of figure eight knot (whose Alexander polynomial is $t^2 3t + 1$), cannot be of the form $\pi_1(\mathbb{C}^2 \mathcal{C})$.
- However, the class of possible π_1 of plane curve complements includes braid groups, or groups of torus knots of type (p, q).

• The Alexander polynomial doesn't provide enough information for reducible curves (with $s \ge 2$ irreducible components).

- The Alexander polynomial doesn't provide enough information for reducible curves (with $s \ge 2$ irreducible components).
- E.g., M. Oka showed that if C is a union of two curves that intersect transversally, then $\Delta_C(t) = (t-1)^{s-1}$.

- The Alexander polynomial doesn't provide enough information for reducible curves (with $s \ge 2$ irreducible components).
- E.g., M. Oka showed that if C is a union of two curves that intersect transversally, then $\Delta_C(t) = (t-1)^{s-1}$.
- To overcome this problem, we study higher coverings of the complement, or more sophisticated invariants (e.g., L²-Betti numbers) of the infinite cyclic covering.

• Let X^{ab} be the cover of $X = \mathbb{C}^2 - \mathcal{C}$ corresponding to G' = [G, G].

- Let X^{ab} be the cover of $X = \mathbb{C}^2 \mathcal{C}$ corresponding to G' = [G, G].
- The universal abelian module

$$\mathcal{A}^{\mathbb{C}}:=H_1(X^{ab};\mathbb{C})=G'/G''\otimes\mathbb{C}$$

is finitely generated over $\mathbb{C}[G/G']=\mathbb{C}[t_1^{\pm 1},..,t_s^{\pm 1}]=:R_s$

- Let X^{ab} be the cover of $X = \mathbb{C}^2 \mathcal{C}$ corresponding to G' = [G, G].
- The universal abelian module

$$\mathcal{A}^{\mathbb{C}}:=H_1(X^{ab};\mathbb{C})=G'/G''\otimes\mathbb{C}$$

is finitely generated over $\mathbb{C}[G/G']=\mathbb{C}[t_1^{\pm 1},..,t_s^{\pm 1}]=:R_s$

• The support $\operatorname{Supp}(\mathcal{A}^{\mathbb{C}})$ of $\mathcal{A}^{\mathbb{C}}$ is the sub-scheme of the s-dim. torus $(\mathbb{C}^*)^s = \operatorname{Spec}(R_s)$ defined by the order ideal of $\mathcal{A}^{\mathbb{C}}$.

- Let X^{ab} be the cover of $X = \mathbb{C}^2 \mathcal{C}$ corresponding to G' = [G, G].
- The universal abelian module

$$\mathcal{A}^{\mathbb{C}}:=H_1(X^{ab};\mathbb{C})=G'/G''\otimes\mathbb{C}$$

is finitely generated over $\mathbb{C}[G/G']=\mathbb{C}[t_1^{\pm 1},..,t_s^{\pm 1}]=:R_s$

• The support $\operatorname{Supp}(\mathcal{A}^{\mathbb{C}})$ of $\mathcal{A}^{\mathbb{C}}$ is the sub-scheme of the *s*-dim. torus $(\mathbb{C}^*)^s = \operatorname{Spec}(R_s)$ defined by the order ideal of $\mathcal{A}^{\mathbb{C}}$.

Example

- Let X^{ab} be the cover of $X = \mathbb{C}^2 \mathcal{C}$ corresponding to G' = [G, G].
- The universal abelian module

$$\mathcal{A}^{\mathbb{C}}:=H_1(X^{ab};\mathbb{C})=G'/G''\otimes\mathbb{C}$$

is finitely generated over $\mathbb{C}[G/G']=\mathbb{C}[t_1^{\pm 1},..,t_s^{\pm 1}]=:R_s$

• The support $\operatorname{Supp}(\mathcal{A}^{\mathbb{C}})$ of $\mathcal{A}^{\mathbb{C}}$ is the sub-scheme of the *s*-dim. torus $(\mathbb{C}^*)^s = \operatorname{Spec}(R_s)$ defined by the order ideal of $\mathcal{A}^{\mathbb{C}}$.

Example

• If C is irreducible, then $\operatorname{Supp}(A^{\mathbb{C}}) = \{\Delta_{C}(t) = 0\}.$

- Let X^{ab} be the cover of $X = \mathbb{C}^2 \mathcal{C}$ corresponding to G' = [G, G].
- The universal abelian module

$$\mathcal{A}^{\mathbb{C}}:=H_1(X^{ab};\mathbb{C})=G'/G''\otimes\mathbb{C}$$

is finitely generated over $\mathbb{C}[G/G']=\mathbb{C}[t_1^{\pm 1},..,t_s^{\pm 1}]=:R_s$

• The support $\operatorname{Supp}(\mathcal{A}^{\mathbb{C}})$ of $\mathcal{A}^{\mathbb{C}}$ is the sub-scheme of the *s*-dim. torus $(\mathbb{C}^*)^s = \operatorname{Spec}(R_s)$ defined by the order ideal of $\mathcal{A}^{\mathbb{C}}$.

Example

- If C is irreducible, then $\operatorname{Supp}(A^{\mathbb{C}}) = \{\Delta_{C}(t) = 0\}.$
- If L is a link in S^3 with $G = \pi_1(S^3 \setminus L)$, then $\operatorname{Supp}(\mathcal{A}^{\mathbb{C}})$ is the zero-set of the multivariable Alexander polynomial of L.

Theorem (Libgober)

If C is a curve in general position at infinity, then

$$\operatorname{Supp}(\mathcal{A}^{\mathbb{C}}) \subset \{(\lambda_1, \cdots, \lambda_s) \in (\mathbb{C}^*)^s \mid \prod_{i=1}^s \lambda_i^{d_i} = 1\}.$$

Theorem (Libgober)

If C is a curve in general position at infinity, then

$$\operatorname{Supp}(\mathcal{A}^{\mathbb{C}}) \subset \{(\lambda_1, \cdots, \lambda_s) \in (\mathbb{C}^*)^s \mid \prod_{i=1}^s \lambda_i^{d_i} = 1\}.$$

Theorem (Arapura)

 $\mathrm{Supp}(\mathcal{A}^{\mathbb{C}})$ is a union of translated subtori of $(\mathbb{C}^*)^s$.

Theorem (Libgober)

If C is a curve in general position at infinity, then

$$\operatorname{Supp}(\mathcal{A}^{\mathbb{C}}) \subset \{(\lambda_1, \cdots, \lambda_s) \in (\mathbb{C}^*)^s \mid \prod_{i=1}^s \lambda_i^{d_i} = 1\}.$$

Theorem (Arapura)

 $\mathrm{Supp}(\mathcal{A}^{\mathbb{C}})$ is a union of translated subtori of $(\mathbb{C}^*)^s$.

Remark (Libgober)

These subtori can be identified in terms of local type of singularities and the configuration of singular points.

L^2 -Betti numbers

Studying higher (solvable) covers of $X = \mathbb{C}^2 \setminus \mathcal{C}$, i.e., associated to higher terms in the derived series of $G = \pi_1(X)$, amounts to considering certain L^2 -Betti numbers of the infinite cyclic cover X^c .

$$b_{p}^{(2)}(X,\alpha):=\dim_{\mathcal{N}(\Gamma)}\!H_{p}\left(\,C_{*}(X_{\alpha})\otimes_{\mathbb{Z}\Gamma}\mathcal{N}(\Gamma)\right)\in[0,\infty],$$

where X_{α} is the covering of X defined by α , and $\mathcal{N}(\Gamma)$ is the von Neumann algebra of Γ , so that:

$$b_p^{(2)}(X,\alpha) := \dim_{\mathcal{N}(\Gamma)} H_p\left(C_*(X_\alpha) \otimes_{\mathbb{Z}\Gamma} \mathcal{N}(\Gamma)\right) \in [0,\infty],$$

where X_{α} is the covering of X defined by α , and $\mathcal{N}(\Gamma)$ is the von Neumann algebra of Γ , so that:

• $b_p^{(2)}(X,\alpha)$ is a homotopy invariant of the pair (X,α) .

$$b_p^{(2)}(X,\alpha) := \dim_{\mathcal{N}(\Gamma)} H_p\left(C_*(X_\alpha) \otimes_{\mathbb{Z}\Gamma} \mathcal{N}(\Gamma)\right) \in [0,\infty],$$

where X_{α} is the covering of X defined by α , and $\mathcal{N}(\Gamma)$ is the von Neumann algebra of Γ , so that:

- $b_p^{(2)}(X,\alpha)$ is a homotopy invariant of the pair (X,α) .
- if X is a finite CW-complex,

$$\sum_{p} (-1)^{p} b_{p}^{(2)}(X, \alpha) = \chi(X) = \sum_{p} (-1)^{p} \beta_{p}(X)$$

$$b_p^{(2)}(X,\alpha):=\dim_{\mathcal{N}(\Gamma)} H_p\left(C_*(X_\alpha)\otimes_{\mathbb{Z}\Gamma}\mathcal{N}(\Gamma)\right)\in[0,\infty],$$

where X_{α} is the covering of X defined by α , and $\mathcal{N}(\Gamma)$ is the von Neumann algebra of Γ , so that:

- $b_p^{(2)}(X,\alpha)$ is a homotopy invariant of the pair (X,α) .
- if X is a finite CW-complex,

$$\sum_{p} (-1)^{p} b_{p}^{(2)}(X, \alpha) = \chi(X) = \sum_{p} (-1)^{p} \beta_{p}(X)$$

• if $\operatorname{Image}(\alpha) \subset \overline{\Gamma} \subset \Gamma$, then

$$b_p^{(2)}(X,\alpha:\pi_1(X)\to \bar{\Gamma})=b_p^{(2)}(X,\alpha:\pi_1(X)\to \Gamma)$$

• $\alpha: \pi_1(X) \to \Gamma$ is called admissible if $lk: \pi_1(X) \to \mathbb{Z}$ factors through α .

- $\alpha: \pi_1(X) \to \Gamma$ is called admissible if $lk: \pi_1(X) \to \mathbb{Z}$ factors through α .
- For admissible α , let $\bar{\Gamma} := \operatorname{Im}(\pi_1(X^c) \to \pi_1(X) \xrightarrow{\alpha} \Gamma)$, and $\bar{\alpha} : \pi_1(X^c) \to \bar{\Gamma}$ the induced map.

- $\alpha: \pi_1(X) \to \Gamma$ is called admissible if $lk: \pi_1(X) \to \mathbb{Z}$ factors through α .
- For admissible α , let $\bar{\Gamma} := \operatorname{Im}(\pi_1(X^c) \to \pi_1(X) \xrightarrow{\alpha} \Gamma)$, and $\bar{\alpha} : \pi_1(X^c) \to \bar{\Gamma}$ the induced map.
- Consider $b_p^{(2)}(X,\alpha)$, $p \ge 0$, and $b_1^{(2)}(X^c,\bar{\alpha})$.

- $\alpha: \pi_1(X) \to \Gamma$ is called admissible if $lk: \pi_1(X) \to \mathbb{Z}$ factors through α .
- For admissible α , let $\bar{\Gamma} := \operatorname{Im}(\pi_1(X^c) \to \pi_1(X) \xrightarrow{\alpha} \Gamma)$, and $\bar{\alpha} : \pi_1(X^c) \to \bar{\Gamma}$ the induced map.
- Consider $b_p^{(2)}(X,\alpha)$, $p \ge 0$, and $b_1^{(2)}(X^c,\bar{\alpha})$.
- A priori, there is no reason to expect $b_1^{(2)}(X^c, \bar{\alpha})$ to be finite (as X^c is an infinite CW complex).

Theorem A (Friedl-Leidy-M.)

If $X = \mathbb{C}^2 - \mathcal{C}$ for some curve \mathcal{C} in general position at infinity, and $\alpha : \pi_1(X) \to \Gamma$ is admissible, then

$$b_p^{(2)}(X,\alpha) = \begin{cases} 0, & p \neq 2, \\ \chi(X), & p = 2. \end{cases}$$

Theorem A (Friedl-Leidy-M.)

If $X = \mathbb{C}^2 - \mathcal{C}$ for some curve \mathcal{C} in general position at infinity, and $\alpha : \pi_1(X) \to \Gamma$ is admissible, then

$$b_p^{(2)}(X,\alpha) = \begin{cases} 0, & p \neq 2, \\ \chi(X), & p = 2. \end{cases}$$

Corollary

 $b_p^{(2)}(X,\alpha)$ $(p \ge 0)$ depends only on the degree of $\mathcal C$ and on the local type of singularities, and is independent on α and on the position of singularities of $\mathcal C$. Indeed,

$$b_2^{(2)}(X,\alpha) = (d-1)^2 - \sum_{x \in \operatorname{Sing}(\mathcal{C})} \mu(\mathcal{C},x).$$

Obstructions on the L^2 -Betti numbers of curves

Theorem B (Friedl-Leidy-M.)

If $X = \mathbb{C}^2 - \mathcal{C}$ for some curve \mathcal{C} in general position at infinity, then $b_1^{(2)}(X^c,\bar{\alpha})$ is finite, and an upper bound is determined by the local type of singularities of \mathcal{C} .

Obstructions on the L^2 -Betti numbers of curves

Theorem B (Friedl-Leidy-M.)

If $X = \mathbb{C}^2 - \mathcal{C}$ for some curve \mathcal{C} in general position at infinity, then $b_1^{(2)}(X^c,\bar{\alpha})$ is finite, and an upper bound is determined by the local type of singularities of \mathcal{C} . More precisely,

$$b_1^{(2)}(X^c, \bar{\alpha}) \leq \sum_{x \in \operatorname{Sing}(\mathcal{C})} (\mu(\mathcal{C}, x) + n_x - 1) + 2g + d,$$

where n_x is the number of branches through $x \in \operatorname{Sing}(\mathcal{C})$ and g is the genus of the normalization of \mathcal{C} .

Remark

 $b_1^{(2)}(X^c,\bar{\alpha})$ depends in general on the position of singularities of \mathcal{C} .

Definition (Rational derived series of a group)

• Let
$$G_r^{(0)} = G$$
.

Definition (Rational derived series of a group)

- Let $G_r^{(0)} = G$.
- For $n \ge 1$, the n^{th} term of the rational derived series of G is:

$$G_r^{(n)} = \{g \in G_r^{(n-1)} | g^k \in [G_r^{(n-1)}, G_r^{(n-1)}], \text{ for some } k \in \mathbb{Z} - 0\}$$

Definition (Rational derived series of a group)

- Let $G_r^{(0)} = G$.
- For $n \ge 1$, the n^{th} term of the rational derived series of G is:

$$G_r^{(n)} = \{ g \in G_r^{(n-1)} | g^k \in [G_r^{(n-1)}, G_r^{(n-1)}], \text{ for some } k \in \mathbb{Z} - 0 \}$$

• $G_r^{(i)} \triangleleft G_r^{(j)} \triangleleft G$, if $i \ge j \ge 0$.

Definition (Rational derived series of a group)

- Let $G_r^{(0)} = G$.
- For $n \ge 1$, the n^{th} term of the rational derived series of G is:

$$G_r^{(n)} = \{g \in G_r^{(n-1)} | g^k \in [G_r^{(n-1)}, G_r^{(n-1)}], \text{ for some } k \in \mathbb{Z} - 0\}$$

- $G_r^{(i)} \triangleleft G_r^{(j)} \triangleleft G$, if $i \ge j \ge 0$.
- Set $\Gamma_n := G/G_r^{(n+1)}$ and $\alpha_n : G \to \Gamma_n$ the induced map.

• Let $\bar{\Gamma}_n := \operatorname{Im}\{\pi_1(X^c) \to \pi_1(X) \xrightarrow{\alpha_n} \Gamma_n\}$ and $\bar{\alpha}_n : \pi_1(X^c) \to \bar{\Gamma}_n$ the induced map.

- Let $\bar{\Gamma}_n := \operatorname{Im}\{\pi_1(X^c) \to \pi_1(X) \xrightarrow{\alpha_n} \Gamma_n\}$ and $\bar{\alpha}_n : \pi_1(X^c) \to \bar{\Gamma}_n$ the induced map.
- Set $\delta_n(\mathcal{C}) := b_1^{(2)}(X^c, \bar{\alpha_n}).$

- Let $\bar{\Gamma}_n := \operatorname{Im}\{\pi_1(X^c) \to \pi_1(X) \xrightarrow{\alpha_n} \Gamma_n\}$ and $\bar{\alpha}_n : \pi_1(X^c) \to \bar{\Gamma}_n$ the induced map.
- Set $\delta_n(\mathcal{C}) := b_1^{(2)}(X^c, \bar{\alpha_n}).$

- Let $\bar{\Gamma}_n := \operatorname{Im}\{\pi_1(X^c) \to \pi_1(X) \xrightarrow{\alpha_n} \Gamma_n\}$ and $\bar{\alpha}_n : \pi_1(X^c) \to \bar{\Gamma}_n$ the induced map.
- Set $\delta_n(\mathcal{C}) := b_1^{(2)}(X^c, \bar{\alpha_n}).$

Theorem (Friedl-Leidy-M.)

 $\delta_n(\mathcal{C})$ coincides with the Cochran-Harvey n^{th} order degree of $G = \pi_1(X)$.

- Let $\bar{\Gamma}_n := \operatorname{Im}\{\pi_1(X^c) \to \pi_1(X) \xrightarrow{\alpha_n} \Gamma_n\}$ and $\bar{\alpha}_n : \pi_1(X^c) \to \bar{\Gamma}_n$ the induced map.
- Set $\delta_n(\mathcal{C}) := b_1^{(2)}(X^c, \bar{\alpha_n}).$

Theorem (Friedl-Leidy-M.)

 $\delta_n(\mathcal{C})$ coincides with the Cochran-Harvey n^{th} order degree of $G = \pi_1(X)$.

• So $\delta_n(\mathcal{C})$ is an integral invariant of G measuring the "size" of $G_r^{(n+1)}/G_r^{(n+2)}$ in the same way the degree of $\Delta_{\mathcal{C}}(t)$ measures the size of the infinite cyclic Alexander module.

- Let $\bar{\Gamma}_n := \operatorname{Im}\{\pi_1(X^c) \to \pi_1(X) \xrightarrow{\alpha_n} \Gamma_n\}$ and $\bar{\alpha}_n : \pi_1(X^c) \to \bar{\Gamma}_n$ the induced map.
- Set $\delta_n(\mathcal{C}) := b_1^{(2)}(X^c, \bar{\alpha_n}).$

Theorem (Friedl-Leidy-M.)

 $\delta_n(\mathcal{C})$ coincides with the Cochran-Harvey n^{th} order degree of $G = \pi_1(X)$.

- So $\delta_n(\mathcal{C})$ is an integral invariant of G measuring the "size" of $G_r^{(n+1)}/G_r^{(n+2)}$ in the same way the degree of $\Delta_{\mathcal{C}}(t)$ measures the size of the infinite cyclic Alexander module.
- In fact, if C is irreducible, $\delta_0(C) = \deg \Delta_C(t)$.

• Consequences of finiteness property: Free groups \mathbb{F}_m with $m \geq 2$ cannot be of the form $\pi_1(\mathbb{C}^2 - \mathcal{C})$, for \mathcal{C} a curve in general position at infinity, and similarly for groups of boundary links (those links whose components admit mutually disjoint Seifert surfaces). Indeed, some δ_n is infinite for these groups (cf. Harvey).

• The degrees $\delta_n(\mathcal{C})$ may be computed by means of Fox free calculus by using a presentation of $\pi_1(\mathbb{C}^2 - \mathcal{C})$.

- The degrees $\delta_n(\mathcal{C})$ may be computed by means of Fox free calculus by using a presentation of $\pi_1(\mathbb{C}^2 \mathcal{C})$.
- A presentation can be obtained by means of Moishezon's braid monodromy.

• If C is defined by a weighted homogeneous polynomial f(x,y) = 0 in \mathbb{C}^2 , then G is the group of an (algebraic) fibered link, and

- If C is defined by a weighted homogeneous polynomial f(x,y) = 0 in \mathbb{C}^2 , then G is the group of an (algebraic) fibered link, and
 - if either n > 0 or $\beta_1(X) > 1$, then $\delta_n(C) = \mu(C, 0) 1$,

- If C is defined by a weighted homogeneous polynomial f(x,y) = 0 in \mathbb{C}^2 , then G is the group of an (algebraic) fibered link, and
 - if either n > 0 or $\beta_1(X) > 1$, then $\delta_n(\mathcal{C}) = \mu(\mathcal{C}, 0) 1$,
 - if $\beta_1(X) = 1$, then $\delta_0(C) = \mu(C, 0)$, where $\mu(C, 0)$ is the Milnor number of the singularity germ at the origin.

- If C is defined by a weighted homogeneous polynomial f(x,y)=0 in \mathbb{C}^2 , then G is the group of an (algebraic) fibered link, and
 - if either n > 0 or $\beta_1(X) > 1$, then $\delta_n(\mathcal{C}) = \mu(\mathcal{C}, 0) 1$,
 - if $\beta_1(X) = 1$, then $\delta_0(C) = \mu(C, 0)$, where $\mu(C, 0)$ is the Milnor number of the singularity germ at the origin.
- If $\beta_1(G) = 1$ then $\delta_0(C) = deg\Delta_C(t)$. Moreover, in this case, if $\delta_0 = 0$ then $\delta_n = 0$ for all n.

Let $\bar{\mathcal{C}} \subset \mathbb{CP}^2$ be an irreducible degree d curve having *only nodes* and *cusps* as its only singularities.

Set $\mathcal{C}:=\bar{\mathcal{C}}-L_{\infty}$, for L_{∞} a generic line at infinity in \mathbb{CP}^2 .

Let $\bar{\mathcal{C}} \subset \mathbb{CP}^2$ be an irreducible degree d curve having *only nodes* and cusps as its only singularities.

Set $\mathcal{C}:=\bar{\mathcal{C}}-L_{\infty}$, for L_{∞} a generic line at infinity in \mathbb{CP}^2 .

If $d \not\equiv 0 \pmod{6}$, then $\delta_n(\mathcal{C}) = 0$ for all n. (this follows from the divisibility results on $\Delta_{\mathcal{C}}(t)$, which imply $\Delta_{\mathcal{C}}(t) = 1$).

Zariski's sextics with 6 cusps

Example

Let $\bar{\mathcal{C}} \subset \mathbb{CP}^2$ be a curve of degree 6 with only 6 cusps. Set $\mathcal{C} := \bar{\mathcal{C}} - L_{\infty}$, for L_{∞} a generic line at infinity in \mathbb{CP}^2 .

Zariski's sextics with 6 cusps

Example

Let $\bar{\mathcal{C}} \subset \mathbb{CP}^2$ be a curve of degree 6 with only 6 cusps. Set $\mathcal{C} := \bar{\mathcal{C}} - L_{\infty}$, for L_{∞} a generic line at infinity in \mathbb{CP}^2 .

• If the 6 cusps are on a conic, then $\pi_1(\mathbb{C}^2 - \mathcal{C})$ is isomorphic to π_1 of the trefoil knot, and has Alexander polynomial $t^2 - t + 1$. Thus $\delta_0(\mathcal{C}) = 2$, and $\delta_n(\mathcal{C}) = 1$ for all n > 0.

Zariski's sextics with 6 cusps

Example

Let $\bar{\mathcal{C}} \subset \mathbb{CP}^2$ be a curve of degree 6 with only 6 cusps. Set $\mathcal{C} := \bar{\mathcal{C}} - L_{\infty}$, for L_{∞} a generic line at infinity in \mathbb{CP}^2 .

- If the 6 cusps are on a conic, then $\pi_1(\mathbb{C}^2 \mathcal{C})$ is isomorphic to π_1 of the trefoil knot, and has Alexander polynomial $t^2 t + 1$. Thus $\delta_0(\mathcal{C}) = 2$, and $\delta_n(\mathcal{C}) = 1$ for all n > 0.
- If the six cusps are not on a conic, then $\pi_1(\mathbb{C}^2 \mathcal{C})$ is abelian. Therefore, $\delta_n(\mathcal{C}) = 0$ for all $n \geq 0$.

Corollary

The L^2 -Betti numbers $\delta_n(\mathcal{C})$ are sensitive to the position of singular points of \mathcal{C} .

Corollary

The L²-Betti numbers $\delta_n(\mathcal{C})$ are sensitive to the position of singular points of \mathcal{C} .

Open Problem

Find examples of Zariski pairs that are distinguished only by some L^2 -Betti numbers of the infinite cyclic cover of the complement.

THANK YOU!!!