The A-B slice problem and topological arbiters

The A-B slice problem and topological arbiters

Slava Krushkal

December 17, 2009

History and motivation:

Geometric classification tools in higher dimensions:

Surgery: Given an n-dimensional Poincaré complex X, is there an n-manifold M^n homotopy equivalent to it?

s-cobordism theorem: Given an (n+1)-dimensional s-cobordism W with $\partial W=M_1\sqcup (-M_2)$, is W isomorphic to the product $M_1\times [0,1]$?

History and motivation:

Geometric classification tools in higher dimensions:

Surgery: Given an n-dimensional Poincaré complex X, is there an n-manifold M^n homotopy equivalent to it?

s-cobordism theorem: Given an (n+1)-dimensional s-cobordism W with $\partial W=M_1\sqcup (-M_2)$, is W isomorphic to the product $M_1\times [0,1]$?

Both statements make sense for a fixed fundamental group.

In dimension n=4: **smoothly** both surgery and s-cobordism fail even in the simply-connected case (Donaldson)

Dimension n = 4, topological category:

Freedman (1982): Both surgery and s-cobordism conjectures hold for $\pi_1 = 1$ and more generally for elementary amenable groups.

Applications:

- ullet Classification of topological simply-connected 4-manifolds.
- \bullet Slice results for knots and links, in particular: Alexander polynomial 1 knots are slice.
- (Quinn): Classification of homeomorphisms (up to isotopy) of simply-connected 4—manifolds.

Conjecture (Freedman 1983) Surgery fails for free groups.

More specifically, there does not exist a topological 4-manifold M, homotopy equivalent to $\vee^3 S^1$, with $\partial M = \mathcal{S}_0(Wh(Bor))$.

Equivalently: The Whitehead double of the Borromean rings is not a "free" slice link.

Link homotopy versus link concordance:

A link $L = (l_1, \dots, l_n)$ is slice if its components bound disjoint embedded disks in D^4 .

L is null-homotopic if its components bound disjoint disks in D^4 that may have self-intersections.

The Whitehead link: null-homotopic, not slice.

The effect of a crossing change on the fundamental group of the complement: relation $[m_i^g,m_i^h]=1.$

The Milnor group of a link $L = (l_1, \ldots, l_n)$:

$$ML := \pi_1(S^3 \setminus L) / \ll [m_i^g, m_i^h], g, h \in \pi_1(S^3 \setminus L), i = 1, \dots, n \gg$$

Milnor: A link $L=(l_1,\ldots,l_n)$ is null-homotopic if and only if $ML\cong M\ Free_{m_1,\ldots,m_n}.$

The Milnor group is nilpotent of class n=number of link components.

Algebraic manipulations in the Milnor group \leftrightarrow geometric operations on the link.

A decomposition of D^4 , $D^4=A\cup B$, is an extension to the 4-ball of the standard genus one Heegaard decomposition of the 3-sphere. Specified distinguished curves $\alpha\subset\partial A, \beta\subset\partial B$ form the Hopf link in $S^3=\partial D^4$.

Figure: A 2-dimensional example of a decomposition, $D^2 = A \cup B$.

Iterate to get examples of model decompositions (introduced by M. Freedman and X.-S. Lin):

Figure: Examples of model decompositions of height 3.

An n-component link $L\subset S^3$ is weakly A-B slice if there exist decompositions $(A_i,B_i), i=1,\ldots,n$ of D^4 and disjoint embeddings of all 2n manifolds $\{A_i,B_i\}$ into D^4 so that the distinguished curves $(\alpha_1,\ldots,\alpha_n)$ form the link L, and the curves (β_1,\ldots,β_n) form a parallel copy of L.

L is A-B slice if, in addition, the new embeddings $A_i \subset D^4, B_i \subset D^4$ are standard: isotopic to the original embeddings.

Conjecture (M.Freedman 1983) 4-dimensional topological surgery fails for free groups.

More specifically, there does not exist a topological 4-manifold M, homotopy equivalent to $\vee^3 S^1$, with $\partial M = \mathcal{S}_0(Wh(Bor))$.

Equivalently: The Whitehead double of the Borromean rings is not a "free" slice link.

Equivalently: The Borromean rings are not A-B slice.

Connection with the surgery conjecture:

Suppose the existence of M^4 , homotopy equivalent to $\vee^3 S^1$, with $\partial M = \mathcal{S}_0(Wh(Bor))$. Its universal cover \widetilde{M} is contractible. The end-point compactification of \widetilde{M} is homeomorphic to the 4-ball. $\pi_1(M)$, the free group on three generators, acts on D^4 .

Claim: There exist disjoint embeddings of six manifolds into D^4 : three copies $\{A_i\}$ of A and three copies $\{B_i\}$ of B, such that $\alpha_1,\alpha_2,\alpha_3$ form the Borromean rings; β_1,β_2,β_3 are a parallel copy. This proves that the Borromean rings are weakly A-B slice.

Proof of the claim: a "relative-slice" problem. An illustration in $\boldsymbol{2}$ dimensions:

Figure: Disjoint embeddings of $(M,\gamma),\,(N,\delta)$ in (D^4,S^3) , where $\gamma,\,\delta$ form a Hopf link in $S^3.$

There is a secondary obstruction, taking into account the embeddings $A \hookrightarrow D^4$, $B \hookrightarrow D^4$, showing that these decompositions do not solve the A-B slice problem.

The Hall-Witt identity:

$$[[x, y], z^x][[z, x], y^z][[y, z], x^y] = 1.$$

$$l_1 = [[m_3, m_4], m_2] [[m_2, m_3], m_4] [[m_4, m_2], m_3] = 1.$$

A link L is homotopy A-B slice if there exist decompositions A_i, B_i and disjoint maps $\alpha_i \colon A_i \longrightarrow D^4, \beta_i \longrightarrow D^4$ such that

- (1) all sets in the collection $\alpha_1A_1,\ldots,\alpha_nA_n,\beta_1B_1,\ldots,\beta_nB_n$ are disjoint,
- (2) the allowed singularities of the maps α_i, β_i are self-intersections of 2-handles of A_i, B_i (and not intersections between different 2-handles), and
- (3) each map α_i, β_i is "link-homotopic" to the original embedding $A_i \hookrightarrow D^4, B_i \hookrightarrow D^4$.

Conjecture. If the generalized Borromean rings are homotopy A-B slice then Wh(Bor) is slice.

Joint work with M. Freedman:

Consider $\mathcal{M}=\{(M,\gamma)|M$ is a codimension zero, smooth, compact submanifold of D^4 , and $M\cap\partial D^4$ is a tubular neighborhood of an unknotted circle $\gamma\subset S^3\}.$

A topological arbiter is an invariant $A: \mathcal{M} \longrightarrow \{0,1\}$ satisfying axioms (1) – (3):

- (1) If (M,γ) is ambiently isotopic to (M',γ') in D^4 then $\mathcal{A}(M,\gamma)=\mathcal{A}(M',\gamma').$
- (2) If $(M,\gamma)\subset (M',\gamma)$ and $\mathcal{A}(M,\gamma)=1$ then $\mathcal{A}(M',\gamma')=1$.
- (3) Let $D^4=A\cup B$ be a decomposition of D^4 , so the distinguished curves α,β of A,B form the Hopf link in ∂D^4 . Then $\mathcal{A}(A,\alpha)+\mathcal{A}(B,\beta)=1$.

The A-B slice problem and topological arbiters

└─Topological arbiters

Theorem There are uncountably many topological arbiters on D^4 .

Theorem There are uncountably many topological arbiters on D^4 .

Axiom (4): Suppose $\mathcal{A}(M',\gamma')=1$ and $\mathcal{A}(M'',\gamma';)=1$. Then $\mathcal{A}(D(M',M''),\gamma)=1$ where D(M',M'') is the "Bing double" of M',M''.

Proposition A topological arbiter satisfying Axioms (1)-(4) is an obstruction to topological surgery.

Theorem There are uncountably many topological arbiters on D^4 .

Theorem Given a non-trivial square in the stable homotopy ring, there is a local topological arbiter not induced by homology on D^{2n} for sufficiently large n.

For example, the Hopf map $h\colon S^3\longrightarrow S^2$ is a generator of π_1^s , whose square is non-zero in π_2^s . There is an associated topological arbiter in dimension 8.