Parity criterion for unstabilized Heegaard splittings

Jung Hoon Lee
Korea Institute for Advanced Study

December 16, 2009
• handlebody

A handlebody can be obtained from a 3-ball by attaching 1-handles.
• Heegaard splitting

A Heegaard splitting $M = H_1 \cup_S H_2$ of a closed 3-manifold M is a decomposition of M into two handlebodies H_1 and H_2. ($S = \partial H_1 = \partial H_2$)

Every compact 3-manifold admits Heegaard splittings.
• stabilization

Add a trivial 1-handle to H_1 and remove it from H_2.

This results in a new Heegaard splitting $H'_1 \cup_{S'} H'_2$ with genus increased by one.
Equivalently,

A Heegaard splitting \(H_1 \cup_S H_2 \) obtained by a stabilization has essential disks \(D_1 \subset H_1 \) and \(D_2 \subset H_2 \) with \(|D_1 \cap D_2| = 1 \).
Example

[Waldhausen] Any positive genus Heegaard splitting of S^3 is stabilized.

We are interested in Heegaard splittings which are not stabilized. (unstabilized Heegaard splittings.)
For a genus $g \geq 2$ handlebody H, a collection of essential disks $\{D_1, \cdots, D_g\}$ in H is called a **complete meridian disk system** if the result of cutting H along $\bigcup_{i=1}^{g} D_i$ is a 3-ball.
We say that a collection of mutually disjoint essential disks \(\{D_1, \cdots, D_{3g-3}\} \) in \(H \) gives a **pants decomposition** if \(\bigcup_{i=1}^{3g-3} \partial D_i \) cuts \(\partial H \) into a collection of 2g – 2 pair of pants.
Theorem A

Let $M = H_1 \cup_S H_2$ be a genus $g \geq 2$ Heegaard splitting of a 3-manifold M and $\{D_1, \ldots, D_g\}$ and $\{E_1, \ldots, E_g\}$ be complete meridian disk systems of H_1 and H_2, respectively.

If $|D_i \cap E_j| \equiv 0 \pmod{2}$ for all the pairs (i, j), then $H_1 \cup_S H_2$ is unstabilized.
Lemma

Suppose that \(\{D_1, \ldots, D_g\} \) and \(\{E_1, \ldots, E_g\} \) satisfy that \(|D_i \cap E_j| \equiv 0 \pmod{2} \) for all \(1 \leq i, j \leq g \).

Then there exist \textbf{pants decomposition} \(\{D_1, \ldots, D_g, D_{g+1}, \ldots, D_{3g-3}\} \) of \(H_1 \) and \(\{E_1, \ldots, E_g, E_{g+1}, \ldots, E_{3g-3}\} \) of \(H_2 \) such that \(|D_i \cap E_j| \equiv 0 \pmod{2} \) for all \(1 \leq i, j \leq 3g - 3 \).
Theorem A’

Let $M = H_1 \cup_S H_2$ be a genus $g \geq 2$ Heegaard splitting of a 3-manifold M and \{D_1, \cdots, D_{3g-3}\} and \{E_1, \cdots, E_{3g-3}\} give pants decomposition of H_1 and H_2, respectively.

If $|D_i \cap E_j| \equiv 0 \pmod{2}$ for all $1 \leq i, j \leq 3g - 3$, then $H_1 \cup_S H_2$ is unstabilized.
Sketch of proof)
Suppose it is stabilized. Then there exists disks D in H_1 and E in H_2 such that $|D \cap E| = 1$.

Cut D by $\bigcup_{i=1}^{3g-3} D_i$ into subdisks and connect endpoints of arcs in S as in the Figure. Do the same for E with $\bigcup_{j=1}^{3g-3} E_j$. Then the parity of number of intersections of new curves is not changed.
Now $|\partial D \cap \partial E|$ is equivalent to $\sum |\partial D_i \cap \partial E_j|$ in (mod2) and by the hypothesis of Theorem A', it is 0 (mod2).

This contradicts that $|D \cap E| = 1$.
• **Double (2-fold) branched covering**

Let \(L \) be an \(n \)-bridge link in \(S^3 \).

Let \(\{a_i\} \) be a collection of bridge arcs and \(\Delta_i \)'s be the corresponding disks in a 3-ball \(B_1 \) in an \(n \)-bridge presentation of \(L \).

Cut \(B_1 \) along \(\bigcup \Delta_i \) to get \(\bar{B}_1 \).

Cut \(B_1 \) along \(\bigcup \Delta_i \) to get \(\bar{B}_1 \).
Double \tilde{B}^3_1 along Δ_i’s.

\Rightarrow We obtain a genus $n - 1$ Heegaard splitting of the 2-fold branched cover of S^3 over L.
• **application**

• **Theorem**

Let L be an n-component, n-bridge link in S^3. Then the induced Heegaard splitting of the 2-fold branched cover of S^3 over L is unstabilized.

Remark There are examples (e.g. (among) torus knots) such that the Heegaard splitting for the 2-fold cover induced from minimal bridge presentation is stabilized.