Unknotting operation for fibered knots and pseudo-fiber surfaces.

Yukari Funakoshi

Nara Women's University

August 25, 2014
In this talk we treat knots and links in S^3.

link:

knot:

trivial knot

trefoil knot

figure eight knot
Definition (unknotting operation)

L: link

D: a disk in S^3 which intersects L in two points with different orientations.

$L':$ the link obtained from L by applying $+1$ or -1 surgery along ∂D.

We say that L' is obtained from L by an unknotting operation.

K: knot

The minimum of the number of unknotting operations required for transforming K into a trivial knot is the unknotting number of K (denoted by $u(K)$).
Introduction
Preliminaries
pseudo-fiber surface of level n
Application to unknotting number of fibered knots

(1937)
Wendtz

(1970’s)
Murasugi, Stallings

(1980’s)
Gabai \rightarrow Sharlemann-Thompson, Kobayashi
Culler-Gordon-Luecke-Shalen \rightarrow Kanenobu-Murakami

(1990’s)
Kronheimer-Mrowka \rightarrow Rudolph, Tanaka

(2000’s)
Ozsváth-Szabó
Introduction
Preliminaries
pseudo-fiber surface of level n
Application to unknotting number of fibered knots

(1937)
Wendtz

(1970's)
Murasugi, Stallings

(1980's)
Gabai → Sharlemann-Thompson, Kobayashi
Culler-Gordon-Luecke-Shalen → Kanenobu-Murakami

(1990's)
Kronheimer-Mrowka → Rudolph, Tanaka

(2000's)
Ozsváth-Szabó
Definition (minimal genus Seifert surface, genus of a knot)

The genus of a knot K is

$$g(K) := \min \{\text{genus}(F) | F: \text{Seifert surface for } K\}$$

A Seifert surface S for K is

minimal genus if $\text{genus}(S) = g(K)$.

Note. K: trivial knot $\iff g(K) = 0$
Theorem (Scharlemann-Thompson)

L, L': knot
$L \rightarrow L'$: unknotting operation
$g(L') < g(L)$
$\exists S$: minimal genus Seifert surface of L
\hspace{1cm} s.t. S is a plumbing of a surface and Hopf band,

and

\begin{center}
\includegraphics[width=0.5\textwidth]{image}
\end{center}

The minimal genus Seifert surfaces for K are not necessarily unique (up to isotopy relative K).

Fact

For each fibered link (: defined later) K the minimal genus Seifert surface are unique up to isotopy relative K.

(It is a *fiber surface*)
Corollary

Suppose K: fibered knot s.t. $u(K) = 1$. Then,

\exists fiber surface S for K.

s.t. $K \rightarrow K'$: trivial knot

Then S': a Seifert surface for trivial knot
In fact, S' is always what is called a pre-fiber surface (defined later). Moreover, for each $g(\geq 1)$, genus g pre-fiber surface for the trivial knot is isotopic to

It is also studied that what kind of twists on Σ^1_g produce fiber surfaces.

Motivation:

Generalize the above results for fibered knots with unknotting numbers > 1.
L : link
S : Seifert surface for L
$E(L)(:= S^3 \setminus \text{Int} \text{N}(L))$: exterior of L
(For simplicity we denote $S \cap E(L)$ by S.)
$N = N(S; E(L))$
$\delta = N \cap \partial E(L)$

$R_-(\delta)$ ($R_+(\delta)$) corresponds to $S \times \{0\}$ ($S \times \{1\}$).

The product sutured manifold (N, δ) is called the sutured manifold obtained from S.
Definition (complementary sutured manifold)

\[N^c = \text{cl}(E(L) \setminus N) \]
\[\delta^c = \text{cl}(\partial E(L) \setminus \delta) \]
\[R_{\pm}(\delta^c) = R_{\mp}(\delta) \]

\((N^c, \delta^c)\) is called the complementary sutured manifold for \(S\).
Let L be a link, S be a Seifert surface for L.

Definition (fiber surface)

S is a *fiber surface*, if:

- the complementary sutured manifold is a product sutured manifold.

Definition (fibered link, knot)

L is a *fibered link* (*knot*) if

\[\exists S : \text{Seifert surface for } L \text{ s.t. } S \text{ is a fiber surface.} \]

\(S \): Seifert surface for a link \(L \)

\((N^c, \delta^c)\): complementary sutured manifold for \(S \)

Definition (pre-fiber surface)

\(S \) is a **pre-fiber surface**, if:

\[\exists D^\pm (\subset N^c): \text{mutually disjoint disks} \]

s.t. \(R_\pm(\delta^c) \cap D^\pm = \partial D^\pm: \text{essential in } R_\pm(\delta^c) \)

(such disk is called a compressing disk for \(R_\pm(\delta^c) \)),

and \((N^{c'}, \delta^c)\) is a product sutured manifold,

where \(N^{c'} \) is a 3-manifold obtained from \(N^c \)

by cutting along \(D^+ \cup D^- \).

The compressing disks \(\tilde{D}^+, \tilde{D}^- \) for \(S \), which are corresponding to \(D^+, D^- \) are called **canonical compressing disks** for \(S \).
Example

Unknotting operation for fibered knots and pseudo-fiber surfaces.
Hirasawa’s construction of pre-fiber surface

Let $\epsilon_1, \epsilon_2, \ldots, \epsilon_p$: sequence of signs \pm,

\[\begin{array}{c}
\begin{array}{c}
\text{Notation:}
\end{array}
\end{array} \]

\[D(\epsilon_1, \epsilon_2, \ldots, \epsilon_p): \text{the diagram given by:} \]

(Note: $D(\epsilon_1, \epsilon_2, \ldots, \epsilon_p)$ is isotopic to $D(\epsilon_2, \ldots, \epsilon_p, \epsilon_1)$ on S^2)

Let

\[S(\epsilon_1, \epsilon_2, \ldots, \epsilon_p): \text{the Seifert surface obtained from } D(\epsilon_1, \epsilon_2, \ldots, \epsilon_p) \]

Hirasawa showed that

For each $n \geq 1$, \(S(\underbrace{+ \cdots + - \cdots -}_{n \quad n+1}) \) is isotopic to Σ_n^1, and \(S(\underbrace{+ \cdots + - \cdots -}_{n \quad n}) \) is also a pre-fiber surface.
Theorem (T. Kobayashi)

Suppose \(K: \) fibered knot s.t. \(u(K) = 1 \).

Then,

\(\exists \) fiber surface \(S \) for \(K \).

s.t.

\(K \rightarrow K': \) trivial knot

Then

\(S: \) fiber surface

\(S': \) pre-fiber surface
Theorem (T. Kobayashi)

S: pre-fiber surface with canonical compressing disks \bar{D}^+, \bar{D}^-.
α: an arc properly embedded in S
\[\text{s.t. } \alpha \cap \bar{D}^+: \text{ 1-point},\]
\[\text{and } \alpha \cap \bar{D}^-: \text{ 1-point}.\]

The surface obtained from S by applying a twist along α is a fiber surface.

Example

Unknotting operation for fibered knots and pseudo-fiber surfaces.
Motivation:

Generalize the above results for fibered knots with unknotting numbers > 1.
A generalization of pre-fiber surface.

Let L: link
S: Seifert surface
(N^c, δ^c): complementary sutured manifold for S

Definition (pseudo-fiber surface of level n)

For $n \geq 0$, S is a pseudo-fiber surface of level n, if:

$\exists D_1^\pm, \ldots, D_n^\pm$
: mutually disjoint compressing disks of $R_\pm(\delta^c)$

s.t. $(N^{c'}, \delta^c)$ is a product sutured manifold,
where $N^{c'}$ is a 3-manifold obtained from N^c by cutting along
$D_1^+ \cup \cdots \cup D_n^+ \cup D_1^- \cup \cdots \cup D_n^-$

S is a pseudo-fiber surface of level 0 \iff S is a fiber surface
S is a pseudo-fiber surface of level 1 \iff S is a pre-fiber surface
Recall $\epsilon_1, \epsilon_2, \ldots, \epsilon_p$: sequence of signs \pm

(We consider the cyclic order of it.)

$D(\epsilon_1, \epsilon_2, \ldots, \epsilon_p)$: the diagram given by:

$S(\epsilon_1, \epsilon_2, \ldots, \epsilon_p)$: the Seifert surface obtained from $D(\epsilon_1, \epsilon_2, \ldots, \epsilon_p)$

We can decompose it up to cyclic permutation into blocks B_1, B_2, \ldots, B_m s.t. $(-\ldots-+\ldots+\ldots+\ldots+)$

Note: If $(\epsilon_1, \epsilon_2, \ldots, \epsilon_p) \neq (+, \ldots, +)$ or $(-, \ldots, -)$ then m is an even number.
Proposition

Suppose \((\epsilon_1, \epsilon_2, \ldots, \epsilon_p) \neq (+, \ldots, +) \text{ or } (-, \ldots, -),\)

(We can decompose it into blocks \(B_1, B_2, \ldots, B_m.\))

Then \(S(\epsilon_1, \epsilon_2, \ldots, \epsilon_p)\) is a pseudo-fiber surface of level \(\frac{m}{2}.\)

Moreover a system of canonical compressing disks for \(S(\epsilon_1, \epsilon_2, \ldots, \epsilon_p)\) appears at each pair of \(-+\), or \(+-\) as in.
A generalization of Theorem (T. Kobayashi)

Theorem (T. Kobayashi)

*\(S\): pre-fiber surface with canonical compressing disks \(\bar{D}^+, \bar{D}^-\).

*\(\alpha\): arcs properly embedded in \(S\) s.t. \(\alpha \cap \bar{D}^+\): 1-point, and \(\alpha \cap \bar{D}^-\): 1-point.

The surface obtained from \(S\) by applying a twist along \(\alpha\) is a fiber surface.

Theorem 4.1

Let \(S\): a pseudo-fiber surface of level \(n\)\(^1\)

*\(\alpha_1\), \ldots, \(\alpha_p\): mutually disjoint arcs properly embedded in \(S\)

Suppose that \(\exists \bar{D}_1^+, \ldots, \bar{D}_n^+, \bar{D}_1^- , \ldots, \bar{D}_n^-\) \((p \leq n)\)

: a system of canonical compressing disks

s.t. \(\alpha_i \cap \partial \bar{D}_i^+\) (\(\partial \bar{D}_i^-\) resp.): 1-point. \((i = 1, \ldots, p)\),

\(\alpha_i \cap \bar{D}_j^\pm = \emptyset\) for \(\forall i, j\) \((i \neq j)\)

Then

any surface obtained from \(S\) by twisting along \(\alpha_1 \cup \cdots \cup \alpha_p\)

is a pseudo-fiber surface of level \(n - p\).
Example 4.2

Unknotting operation for fibered knots and pseudo-fiber surfaces.
Theorem (T. Kobayashi)

Suppose K: fibered knot s.t. $u(K) = 1$.
Then, there exists a fiber surface S for K.

s.t. K: fibered K': trivial knot

Then S': pre-fiber surface
Definition (Ascending sequence of pseudo-fiber surfaces)

A sequence of pseudo-fiber surfaces S_i of level p_i

$$S_0 \rightarrow S_1 \rightarrow \cdots \rightarrow S_i \rightarrow S_{i+1} \rightarrow \cdots \rightarrow S_n$$

is an ascending sequence of pseudo-fiber surfaces if:

- $p_0 = 0$, $p_i \leq p_{i+1}$ ($i = 0, 1, \ldots, n - 1$)
- $\exists \alpha_1^{(i)}, \ldots, \alpha_{q_i}^{(i)}$: mutually disjoint arcs properly embedded in S_i

such that S_{i+1} is obtained from S_i by twisting along $\alpha_1^{(i)} \cup \cdots \cup \alpha_{q_i}^{(i)}$.

Yukari Funakoshi
Unknotting operation for fibered knots and pseudo-fiber surfaces
Question

For each fibered knot K, does there exist an ascending sequence of pseudo-fiber surfaces realizing the unknotting number $u(K)$?

More precisely, does there exist an ascending sequence of pseudo-fiber surfaces

$$S_0 \to S_1 \to \cdots \to S_n$$

(with levels p_i, arcs $\alpha_1^{(i)}, \ldots, \alpha_{q_i}^{(i)}$ as above) such that $\partial S_0 = K$, $\partial S_n =$ trivial knot, and $u(K) = q_0 + q_1 + \cdots + q_{n-1}$?
In [Fu], I gave an affirmative answer to Question for torus knot.

Fibered knots with crossing number ≤ 8

Example

\[u(3_1) = 1 \]
Fibered knots with crossing number ≤ 8

Example

$u(9_{31}) = 2$
Fibered knots with crossing number ≤ 8

Example

$u(8_{16}) = 2$
Fibered knots with crossing number ≤ 8

Example

Σ_0

Σ_1

Σ_2

$u(8_5) = 2$
Fibered knots with crossing number ≤ 8