ON THE THURSTON-BENNEQUIN NUMBER OF KNOTS AND LINKS IN LEGENDRIAN GRAPHS

Toshifumi Tanaka
Gifu University

August 26, 2014
Outline:

- A contact structure
- Legendrian knots
- The Thurston-Bennequin number
- Legendrian graphs
- An invariant of Legendrian graphs
- Recent works
- Results
A contact structure

- Let M be an oriented 3-manifold and ξ, a 2-plane field on M.

We say ξ is a contact structure on M if $\xi = \ker \alpha$ for some 1-form α satisfying $\alpha \wedge d\alpha > 0$:

Example: On \mathbb{R}^3, the 1-form $= dz - ydx$ gives the standard contact structure on \mathbb{R}^3, ξ_{std}.
The standard contact structure

\[\xi_{\text{std}} = \text{Ker}(dz - ydx) \]
A standard contact structure
Legendrian knots

• A knot in \mathbb{R}^3, is a simple closed curve
 $\gamma : S^1 \to \mathbb{R}^3$

• A knot γ in $(\mathbb{R}^3, \xi_{\text{std}})$ is called Legendrian if for all $p \in \gamma$ and ξ_p the contact 2-plane at p, $T_p \gamma \subset \xi_p$.
Legendrian isotopy

- A **Legendrian isotopy** between Legendrian knots is an ambient isotopy with each level Legendrian.

We study Legendrian knots up to Legendrian isotopy.
Front projection

• The \((x,z)\)-projection of a Legendrian knot is called a **front projection**.

Front projections of Legendrian knots do not have vertical tangencies (since \(y = \frac{dz}{dx}\)). At each crossing the overstrand is always the one with smaller slope (since the \(y\)-axis points away from the viewer).
Front projection
Front projection
A classical invariant of Legendrian knots

The Thurston-Bennequin number: tb
The Thurston-Bennequin number

• Let K be an oriented Legendrian knot in \mathbb{R}^3.
• In a front projection, we define the Thurston-Bennequin number $tb(K)$ by

 \[tb(K) = \text{writhe} - \frac{1}{2} \#\text{cusps} \]

 \text{writhe} = \text{signed count of crossings in the projection}

• The Thurston-Bennequin number measures the amount of twisting of the contact planes along the knot and does not depend on the chosen orientation of K.
Example.

\[tb(K_1) = -1, \quad tb(K_2) = -2, \quad tb(K_3) = -2 \]
The maximal Thurston-Bennequin number

The maximal Thurston-Bennequin number of a knot L is the maximal value, denoted by $TB(L)$, of the Thurston-Bennequin numbers for Legendrian knots which are topologically isotopic to L.

Theorem. (Fuchs-Tabachnikov, Topology 36 (1997)). Let L be a knot in \mathbb{R}^3. Then $\quad TB(L) < -\max_{x} \deg_{y} F(x,y) (L)$.
Example.

xz-plane

$TB(L) = 1$, $TB(O) = -1$.

L
Legendrian graphs

• A Legendrian graph in \((\mathbb{R}^3, \xi_{\text{std}})\) is a graph embedded in such a way that all its edges are Legendrian segments.
• Such an embedding is called a Legendrian embedding.
An invariants of Legendrian graphs

We extend tb to Legendrian graphs.

We can define the invariant for cycles in a Legendrain graph (which is piecewise smooth Legendrian knots) in appropriate way (O-P).

- For a Legendrian graph Γ:

 $tb(\Gamma) = \text{the set of the } tbs \text{ of the cycles of } \Gamma$.
Legendrian graphs

\[\text{tb}(L) = \{-1, -1, -1, -2\}. \]
Recent works

Theorem (O'Donnol-Pavelescu, A. G. T. 12 (2012)). Any spatial graph has a Legendrian embedding in $(\mathbb{R}^3, \xi_{\text{std}})$.
Recent works

Theorem (O'Donnol-Pavelescu, A. G. T. 12 (2012)). A graph G admits a Legendrian embedding in $(\mathbb{R}^3, \xi_{\text{std}})$ with all its cycles trivial unknots if and only if G does not contain K_4 as a minor.

A graph H is a minor of a graph G if H can be obtained from G by a finite number of edge contractions.

A trivial unknot $= \includegraphics[width=0.3\textwidth]{trivial_unknot}$

$TB(O) = -1.$
Recent works

Theorem (O'Donnol-Pavelescu, A. G. T. 12 (2012)). Let G be a graph that contains K_4 as a minor. There does not exist a Legendrian embedding of G such that all its cycles realize the maximal Thurston-Bennequin numbers that only consists of odd numbers.
Problem

Does there exist a Legendrian embedding of K_4 such that all its cycles are knots realizing their maximal Thurston-Bennequin numbers?
Results

Theorem.
There exists an infinitely many Legendrian embeddings of K_4 such that all its cycles realize the maximal Thurston-Bennequin numbers that consist of six odd numbers and one even number.
Results

There exists a Legendrian embedding L of K_4 such that
a) $tb(L) = \{-1, -1, -1, 0, 1, 5, 5\}$,
b) Every cycle realizes the maximal Thurston-Bennequin number.
Results

There exist Legendrian embeddings L_n of K_4 such that

a) $tb(L_n) = \{-1, -1+2n, -1+2n, 0, 1+2n, 5+2n, 5\}$ ($n \in \mathbb{Z}$, $n > 0$),

b) every cycle realizes the maximal Thurston-Bennequin number.
An invariant of spatial graphs

- We say that a spatial graph is \textit{mTB-realizable} if it is ambient isotopic to a Legendrian graph such that all its cycles realize their mTB’s.
An invariant of spatial graphs

- We say that a spatial graph is mTB-realizable if it is ambient isotopic to a Legendrian graph such that all its cycles realize their mTB’s.

(a) is not mTB-realizable (by a result of O'Donnol and Pavelescu.)
Corollary. There exists an infinite family of Legendrian embedding of K_4 such that they are mTB-realizable.
Results

Proposition.
If a finite graph G contains two cycles that have no common edges and no common vertices then there exists an embedding of G such that it is not mTB-realizable.
Results

Proposition.
If a finite graph G contains two cycles that have no common edges and no common vertices then there exists an embedding of G such that it is not mTB-realizable.

Thank you very much