L–space knots and twisting operation

Kimihioko Motegi

Knots and Low Dimensional Manifolds

Busan, Korea

25 August, 2014
M : rational homology 3–sphere
M : rational homology 3–sphere

$\widehat{HF}(M)$: Heegaard Floer homology with coefficients in \mathbb{Z}_2 (Ozsváth-Szabó)

$$\text{rank} \widehat{HF}(M) \geq |H_1(M; \mathbb{Z})|$$
M: rational homology 3–sphere

$\widehat{HF}(M)$: Heegaard Floer homology with coefficients in \mathbb{Z}_2 (Ozsváth-Szabó)

$$\text{rank} \widehat{HF}(M) \geq |H_1(M; \mathbb{Z})|$$

M is an L–space if equality holds, i.e. $\text{rank} \widehat{HF}(M) = |H_1(M; \mathbb{Z})|$.
M : rational homology 3–sphere

$\widehat{HF}(M)$: Heegaard Floer homology with coefficients in \mathbb{Z}_2

\[\text{rank} \widehat{HF}(M) \geq |H_1(M; \mathbb{Z})| \]

M is an L–space if equality holds, i.e. $\text{rank} \widehat{HF}(M) = |H_1(M; \mathbb{Z})|$.

Example

Lens spaces ($\neq S^2 \times S^1$), more generally, 3–manifolds with elliptic geometry are L–spaces.
Dehn surgery & L–space

A knot K is called an L–space knot if it admits a nontrivial Dehn surgery producing an L–space.
A knot K is called an L–space knot if it admits a nontrivial Dehn surgery producing an L–space.

- K: a nontrivial L–space knot

\[
K(r) \text{ is an } L\text{–space if } r \geq 2g(K) - 1 \quad \text{or} \quad r \leq -2g(K) + 1. \quad \text{(Ozsváth-Szabó)}
\]
A knot K is called an L–space knot if it admits a nontrivial Dehn surgery producing an L–space.

- K: a nontrivial L–space knot

$K(r)$ is an L–space if $r \geq 2g(K) - 1$ or $r \leq -2g(K) + 1$. (Ozsváth-Szabó)

In particular, each hyperbolic, L–space knot produce infinitely many hyperbolic L–spaces by Dehn surgery.
Question

Which knots are L–space knots?
Which knots are \(L \)-space knots?

\(K \) is an \(L \)-space knot

\[\Rightarrow\]
Question

Which knots are L–space knots?

K is an L–space knot

\Rightarrow

- The non-zero coefficients of the Alexander polynomial of K are ± 1 and alternate in sign. (Ozsváth-Szabó)
Question

Which knots are L–space knots?

K is an L–space knot

\Rightarrow

- The non-zero coefficients of the Alexander polynomial of K are ± 1 and alternate in sign. (Ozsváth-Szabó)

- K is a fibered knot. (Ni)
Since a lens space is an L–space, a knot with lens space surgery is an L–space knot.
Examples of L–space knots

Since a lens space is an L–space, a knot with lens space surgery is an L–space knot.

- **Trivial knot** O
- **Torus knot** $T_{p,q}$
Examples of L–space knots

Since a lens space is an L–space, a knot with lens space surgery is an L–space knot.

- **Trivial knot** O

- **Torus knot** $T_{p,q}$

- **Berge knots**, which are conjectured to comprise all knots with lens space surgeries.
• Montesinos knots

\[K: \text{Montesinos knot} \]

\[K \text{ is an } L\text{-space knot} \]

\[\iff \]

\[K = T_{2, 2n+1}, P(-2, 3, 2n+1), \text{ where } 0 \leq n \in \mathbb{Z} \text{ (up to mirror image)}. \]
Question

What operations on knots can keep a property of being L–space knots?
Question

What operations on knots can keep a property of being L–space knots?

- Some “cabling” operations are such operations. (Hedden)
Question

What operations on knots can keep a property of being L–space knots?

- Some “cabling” operations are such operations. (Hedden)

More generally,

- Some “satellite” operations using 1–bridge braid patterns are also such operations. (Hom-Lidman-Vafaee)
Question

Given an L–space knot K, does there exist an unknotted circle c such that twistings K along c produce an infinite family of L–space knots?
Question

Given an L–space knot K, does there exist an unknotted circle c such that twistings K along c produce an infinite family of L–space knots?

Example

\[
P(-2, 3, 1) = T_{5,2}
\]

L-space knot
Question

Given an L–space knot K, does there exist an unknotted circle c such that twistings K along c produce an infinite family of L–space knots?

Example

\[
P(-2, 3, 1) = T_{5,2} \\
P(-2, 3, 3) = T_{4,3}
\]

L-space knot
Question

Given an L–space knot K, does there exist an unknotted circle c such that twistings K along c produce an infinite family of L–space knots?

Example

<table>
<thead>
<tr>
<th>$P(-2, 3, 1)$</th>
<th>$P(-2, 3, 3)$</th>
<th>$P(-2, 3, 5)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$= T_{5,2}$</td>
<td>$= T_{4,3}$</td>
<td>$= T_{5,3}$</td>
</tr>
</tbody>
</table>

E-space knot
Question

Given an L–space knot K, does there exist an unknotted circle c such that twistings K along c produce an infinite family of L–space knots?

Example

![Diagram of knot twistings]

P(-2, 3, 1) = T_{5,2}

P(-2, 3, 3) = T_{4,3}

P(-2, 3, 5) = T_{5,3}

P(-2, 3, 7)

non L-space knot

L-space knot
Question

Given an L–space knot K, does there exist an unknotted circle c such that twistings K along c produce an infinite family of L–space knots?

Example

\[
\begin{align*}
P(-2, 3, 1) &= T_{5,2} \\
P(-2, 3, 3) &= T_{4,3} \\
P(-2, 3, 5) &= T_{5,3} \\
P(-2, 3, 7) &= T_{6,3}
\end{align*}
\]

\(\{P(-2, 3, 2n + 1)\}_{n \geq 0}\) is a twisted family of L–space knots.
Our approach

\(K\): \(L\)-space knot with \textbf{Seifert surgery} \((K, m)\),
i.e. \(K(m)\) is a Seifert fiber space

Twisting along a "\textit{seifert}\" \(c\) for \((K, m)\)
Our approach

\(K: L\)-space knot with Seifert surgery \((K, m)\),
i.e. \(K(m)\) is a Seifert fiber space

Twisting along a “seiferter” \(c\) for \((K, m)\)

seiferter

A knot \(c\) in \(S^3 - K\) is called a seiferter for a Seifert surgery \((K, m)\)
if \(c\):

- is unknotted in \(S^3\),
- becomes a Seifert fiber in \(K(m)\).
Our approach

K: L–space knot with Seifert surgery (K, m), i.e. $K(m)$ is a Seifert fiber space

Twisting along a “seiferter” c for (K, m)

\begin{itemize}
 \item A knot c in $S^3 - K$ is called a seiferter for a Seifert surgery (K, m) if c:
 \begin{itemize}
 \item is unknotted in S^3,
 \item becomes a Seifert fiber in $K(m)$.
 \end{itemize}
\end{itemize}

In the following we allow the fibration to be degenerate, i.e. it contains an exceptional fiber of index 0 as a degenerate fiber.
“Inheritance” of seiferters

\[S^3 \]

- \(K = T_{3,2} \)
- \(K_n \)
- n-twisting along \(c \)
- Dehn surgery

\[S^3 \]

- \(c \) is unknotted
- \(c \) is a fiber

\[S^3 \]

- \(c \) is a fiber

K notations:
- \(c \) is a fiber
- \(-3,2^n \)
“Inheritance” of seiferters

\[K = T_{-3,2} \]

\[\text{c is unknotted} \]

\[S^3 \]

\[(K, m) \text{ is a Seifert surgery } \Rightarrow (K_n, m_n) \text{ is a Seifert surgery} \]
Let c be a seifter for (K, m).
Let c be a seiferter for (K, m).

(μ, λ): a preferred meridian-longitude pair of $c \subset S^3$
Let c be a seiferten for (K, m).

(μ, λ): a preferred meridian-longitude pair of $c \subset S^3$

M_c: the result of λ–surgery along $c \subset K(m)$
Let c be a seiferter for (K, m).

(μ, λ): a preferred meridian-longitude pair of $c \subset S^3$

M_c: the result of λ–surgery along $c \subset K(m)$

L–space seiferter

A seiferter c for (K, m) is an L–space seiferter if M_c is an L–space.
Let c be a seiferter for (K,m).

(μ, λ): a preferred meridian-longitude pair of $c \subset S^3$

M_c: the result of λ–surgery along $c \subset K(m)$

L–space seiferter

A seiferter c for (K,m) is an *L–space seiferter* if M_c is an *L–space*.

Remark: “$M_c = \lim_{n \to \infty} K_n(m_n)$”.
We call \((K, m)\) an \textit{L–space surgery} if \(K(m)\) is an \textit{L–space}.
We call \((K, m)\) an \(L\)-space surgery if \(K(m)\) is an \(L\)-space.

Theorem 1

Let \(c\) be a seiferter for a small Seifert fibered surgery \((K, m)\).

\((K_n, m_n)\) is an \(L\)-space surgery for infinitely many integers \(n\).

\[\Leftrightarrow\]

\(c\) is an \(L\)-space seiferter.
We call \((K, m)\) an \textit{\(L\)-space surgery} if \(K(m)\) is an \(L\)-space.

Theorem 1

Let \(c\) be a seiferter for a small Seifert fibered surgery \((K, m)\).

\((K_n, m_n)\) is an \(L\)-space surgery for infinitely many integers \(n\).

\(\iff\)

\(c\) is an \(L\)-space seiferter.

For instance, \((O, m)\) has infinitely many \textit{\(L\)-space seiferters} for each \(m\), and we have:
We call \((K, m)\) an \textit{L–space surgery} if \(K(m)\) is an \(L–space\).

\textbf{Theorem 1}

\textit{Let} \(c\) \textit{be a seiferter for a small Seifert fibered surgery} \((K, m)\).
\((K_n, m_n)\) is an \textit{L–space surgery} for infinitely many integers \(n\).
\[\iff\]
\(c\) is an \textit{L–space seiferter}.

For instance, \((O, m)\) has infinitely many \textit{L–space seiferters} for each \(m\), and we have:

\textbf{Theorem 2 (L–space twisted unknots)}

\textit{For the trivial knot} \(O\), \textit{we can take} infinitely many unknotted circles \(c\) \textit{so that for each} \(c\) \textit{the twisted family} \(\{K_{c,n}\}_{|n|>1}\) \textit{is a set of mutually distinct hyperbolic L–space knots}.
$T_{p,q}(pq)$ is a connected sum of two lens spaces, and it has a degenerate Seifert fibration:

\[T_{p,q}(pq) = \text{lens } \# \text{lens} \]

\[S^2 \]

\[\text{degenerate fiber = index 0 fiber} \]
$T_{p,q}(pq)$ is a connected sum of two lens spaces, and it has a degenerate Seifert fibration:

Degenerate Seifert fibration of $T_{p,q}(pq)$ is NOT unique!
Example

c becomes a degenerate fiber in $T_{3,2}(6)$, hence c is a seiferter for $(T_{3,2}, 6)$.
Theorem 3

Let K be $T_{p,q}$ or $C_{p,q}(T_{r,s})$ ($p = qr s \pm 1$) and c a seiferter for (K, pq). We assume $p, q \geq 2$.

Then K_n is an L–space knot for any $n \geq -1$.

Furthermore, if the linking number l between c and K satisfies $l^2 \geq 2pq$, then K_n is an L–space knot for all integers n.
Theorem 3

Let K be $T_{p,q}$ or $C_{p,q}(T_{r,s})$ ($p = qr \pm 1$) and c a seiferter for (K, pq). We assume $p, q \geq 2$.

Then K_n is an L–space knot for any $n \geq -1$.

Furthermore, if the linking number l between c and K satisfies $l^2 \geq 2pq$, then K_n is an L–space knot for all integers n.

Example

c is a seiferter for $(T_{3,2}, 6)$ and the linking number between c and $T_{3,2}$ is 5. Since $5^2 \geq 2 \cdot 3 \cdot 2 = 12$, K_n is an L–space knot for all integers n.
Idea of the proof
Idea of the proof

“inheritance” of seiferters
Idea of the proof

“inheritance” of seiferters

+

Classification of Seifert fibered L–spaces
M: Seifert fiber space over S^2
M: Seifert fiber space over S^2

- M is an L–space $\iff M$ admits no horizontal foliation.

$(\Rightarrow$ Ozsváth and Szabó$)\quad (\Leftarrow$ Lisca and Stipsicz$)$
M: Seifert fiber space over S^2

- M is an L–space $\iff M$ admits no horizontal foliation.

 (\Rightarrow) Ozsváth and Szabó

 (\Leftarrow) Lisca and Stipsicz

- Eisenbud-Hirsh-Neumann, Jankins-Neumann and Naimi gave a necessary and sufficient condition for M to carry a horizontal foliation using Seifert invariants.
Seifert fibered L–spaces

M: Seifert fiber space over S^2

- M is an L–space $\iff M$ admits no horizontal foliation.

 $(\Rightarrow$ Ozsváth and Szabó$)$

 $(\Leftarrow$ Lisca and Stipsicz$)$

- Eisenbud-Hirsh-Neumann, Jankins-Neumann and Naimi gave a necessary and sufficient condition for M to carry a horizontal foliation using Seifert invariants.

Combining them, we obtain:

- A necessary and sufficient condition for M to be an L–space using Seifert invariants.
Use this condition to solve:

Problem

Given an integer b and rational numbers $0 < r_1 \leq r_2 < 1$, find rational numbers $-1 \leq r \leq 1$ such that $S^2(b, r_1, r_2, r)$ is an L–space.
Use this condition to solve:

Problem

Given an integer b and rational numbers $0 < r_1 \leq r_2 < 1$, find rational numbers $-1 \leq r \leq 1$ such that $S^2(b, r_1, r_2, r)$ is an L–space.

Solution:

$$S^2(b, r_1, r_2, r): L\text{-space}$$

for

- $b \geq 1$
- $b = 0$
- $b = -1$ with $r_1 + r_2 \geq 1$
- $b = -1$ with $r_1 + r_2 \leq 1$
- $b = -2$
- $b \leq -3$
Recall that c is a seiferter for (K, pq), where $K = T_{p,q}$ or $C_{p,q}(T_{r,s})$, and $K(pq)$ is a connected sum of two lens spaces.
Recall that c is a seiferter for $(K, \ pq)$, where $K = T_{p,q}$ or $C_{p,q}(T_{r,s})$, and $K(pq)$ is a connected sum of two lens spaces.

Case I: c is a **non-degenerate** fiber.
Recall that c is a seiferter for (K, pq), where $K = T_{p,q}$ or $C_{p,q}(T_{r,s})$, and $K(pq)$ is a connected sum of two lens spaces.

Case I: c is a **non-degenerate** fiber.

- c is not a regular fiber. (Deruelle-Miyazaki-M)

$$K(m)\#lens = lens \# lens$$

$K(n) = lens \# lens$ or a lens space ($n = S_2 S_1$).

Hence $K(n) = lens$ for any integer n. (Deruelle-Miyazaki-M)
Recall that c is a seiferter for (K, pq), where $K = T_{p,q}$ or $C_{p,q}(T_{r,s})$, and $K(pq)$ is a connected sum of two lens spaces.

Case I: c is a non-degenerate fiber.

- c is not a regular fiber. (Deruelle-Miyazaki-M)

- $K_n(m_n)$ is a connected sum of two lens spaces or a lens space ($\neq S^2 \times S^1$).
Recall that \(c \) is a seiferter for \((K, pq)\), where \(K = T_{p,q} \) or \(C_{p,q}(T_{r,s}) \), and \(K(pq) \) is a connected sum of two lens spaces.

Case I: \(c \) is a non-degenerate fiber.

- \(c \) is not a regular fiber. (Deruelle-Miyazaki-M)

 \[
 K(m) = \text{lens} \# \text{lens}\]

- \(K_n(m_n) \) is a connected sum of two lens spaces or a lens space \((\neq S^2 \times S^1)\).

Hence \(K_n(m_n) \) is an \(L \)–space for any integer \(n \).
Case II: c is a **degenerate** fiber.
Case II: \(c \) is a **degenerate** fiber.

\[
\begin{align*}
K(m) &= \text{lens} \# \text{lens} \\
S^2 &= S^2(b, r_1, r_2, \infty) \\
b &\in \mathbb{Z}, \quad 0 < r_i < 1
\end{align*}
\]
Case II: \(c \) is a **degenerate** fiber.

Let \((\mu, \lambda)\) be a preferred meridian-longitude pair of \(c \subset S^3 \).
Case II: \(c \) is a **degenerate** fiber.

Let \((\mu, \lambda)\) be a preferred meridian-longitude pair of \(c \subset S^3 \).

\[
\mu = t \quad \text{and} \quad \lambda = -s - \beta t \quad \text{in} \quad H_1(\partial N(c)) \quad \text{for some} \quad \beta \in \mathbb{Z}.
\]
n–twist along c \iff $-1/n$–surgery along c
n–twist along $c \iff -1/n$–surgery along c

Let (μ_n, λ_n) be a preferred meridian-longitude pair of c_n.
n–twist along c \iff $-1/n$–surgery along c

Let (μ_n, λ_n) be a preferred meridian-longitude pair of c_n.

$\mu_n = \mu - n\lambda$ \quad and \quad $\lambda_n = \lambda$.
n–twist along c \iff $-1/n$–surgery along c

Let (μ_n, λ_n) be a preferred meridian-longitude pair of c_n.

$\mu_n = \mu - n\lambda$ and $\lambda_n = \lambda$.

Then we have:

$\mu_n = ns + (n\beta + 1)t$ and $\lambda_n = -s - \beta t$.
n–twist along $c \iff -1/n$–surgery along c

Let (μ_n, λ_n) be a preferred meridian-longitude pair of c_n.

$\mu_n = \mu - n\lambda$ and $\lambda_n = \lambda$.

Then we have:

$\mu_n = ns + (n\beta + 1)t$ and $\lambda_n = -s - \beta t$.

Hence

$$K_n(m_n) = S^2(b, r_1, r_2, (n\beta + 1)/n).$$
Note that $K_n(m_n) = S^2(b, r_1, r_2, (n\beta + 1)/n) = S^2(b + \beta, r_1, r_2, 1/n)$.
Note that $K_n(m_n) = S^2(b, r_1, r_2, (n\beta + 1)/n) = S^2(b + \beta, r_1, r_2, 1/n)$.

- $K_n(m_n)$ is an L–space for $n = 0, \pm 1$.
Note that $K_n(m_n) = S^2(b, r_1, r_2, (n\beta + 1)/n) = S^2(b + \beta, r_1, r_2, 1/n)$.

- $K_n(m_n)$ is an L–space for $n = 0, \pm 1$.

We divide into four cases:

1. $b + \beta \leq -3$ or $b + \beta \geq 1$
2. $b + \beta = -2$
3. $b + \beta = -1$
4. $b + \beta = 0$.
Assume: \(b + \beta \leq -3 \) or \(b + \beta \geq 1 \)
Assume: \(b + \beta \leq -3 \) or \(b + \beta \geq 1 \)

Then \(K_n(m_n) = S^2(\beta, r_1, r_2, 1/n) \) is an \(L \)-space if \(-1 \leq 1/n \leq 1\).
Assume: $b + \beta \leq -3$ or $b + \beta \geq 1$

Then $K_n(m_n) = S^2(b + \beta, r_1, r_2, 1/n)$ is an L–space if $-1 \leq 1/n \leq 1$.

Thus $K_n(m_n)$ is an L–space if $n \neq 0$.
Assume: \(b + \beta \leq -3 \) or \(b + \beta \geq 1 \)

Then \(K_n(m_n) = S^2(b + \beta, r_1, r_2, 1/n) \) is an \(L \)-space if \(-1 \leq 1/n \leq 1\).

Thus \(K_n(m_n) \) is an \(L \)-space if \(n \neq 0 \).

Since \(K_0(m_0) \) is also an \(L \)-space, \(K_n(m_n) \) is an \(L \)-space for all integers \(n \).
Assume: \(b + \beta = -2 \)
Assume: \(b + \beta = -2 \)

Then \(\exists \varepsilon > 0 \) s.t.

\[K_n(m_n) = S^2(b + \beta, r_1, r_2, 1/n) \] is an \textit{L–space} if \(-1 \leq 1/n \leq \varepsilon \).
Assume: $b + \beta = -2$

Then $\exists \epsilon > 0$ s.t.

$K_n(m_n) = S^2(b + \beta, r_1, r_2, 1/n)$ is an L–space if $-1 \leq 1/n \leq \epsilon$.

Thus $K_n(m_n)$ is an L–space if $n \leq -1$ or $n \geq 1/\epsilon$.
Assume: \(b + \beta = -2 \)

Then \(\exists \epsilon > 0 \) s.t.

\[K_n(m_n) = S^2(b + \beta, r_1, r_2, 1/n) \text{ is an } L\text{-space if } -1 \leq 1/n \leq \epsilon. \]

Thus \(K_n(m_n) \) is an \(L\)-space if \(n \leq -1 \) or \(n \geq 1/\epsilon \).

Since \(K_0(m_0) \) and \(K_1(m_1) \) are also \(L\)-spaces, \(K_n(m_n) \) is an \(L\)-space if \(n \leq 1 \) or \(n \geq 1/\epsilon \).
Assume: $b + \beta = -1$

- If $r_1 + r_2 \geq 1$, then $K_n(m_n) = S^2(b + \beta, r_1, r_2, 1/n)$ is an L–space for any n with $0 < 1/n \leq 1$, i.e. $n \geq 1$

- If $r_1 + r_2 \leq 1$, then $K_n(m_n) = S^2(b + \beta, r_1, r_2, 1/n)$ is an L–space for any n with $-1 \leq 1/n < 0$, i.e. $n \leq -1$
Assume: \(b + \beta = -1 \)

- If \(r_1 + r_2 \geq 1 \), then \(K_n(m_n) = S^2(b + \beta, r_1, r_2, 1/n) \) is an \(L \)-space for any \(n \) with \(0 < 1/n \leq 1 \), i.e. \(n \geq 1 \)

- If \(r_1 + r_2 \leq 1 \), then \(K_n(m_n) = S^2(b + \beta, r_1, r_2, 1/n) \) is an \(L \)-space for any \(n \) with \(-1 \leq 1/n < 0\), i.e. \(n \leq -1 \)

Since \(K_n(m_n) \) is an \(L \)-space for \(n = 0, \pm 1 \), \(K_n(m_n) \) is an \(L \)-space for \(n \geq -1 \) \((r_1 + r_2 \geq 1) \), or \(n \leq 1 \) \((r_1 + r_2 \leq 1) \)
<table>
<thead>
<tr>
<th>$b + \beta$</th>
<th>$K_n : L$-space knot</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\leq -3, \ 1 \leq$</td>
<td>$\forall n$</td>
</tr>
<tr>
<td>-2</td>
<td>$n \leq 1, \ n \geq 1/\varepsilon$</td>
</tr>
</tbody>
</table>
| -1 | $r_1 + r_2 \geq 1 \quad n \geq -1$
| | $r_1 + r_2 \leq 1 \quad n \leq 1$ |
| 0 | $n \geq -1, \ n \leq -1/\varepsilon$ |
Further *homological arguments* show
Further homological arguments show

- $p, q \geq 2 \implies b + \beta \neq -2$
Further **homological arguments** show

- $p, q \geq 2 \implies b + \beta \neq -2$ and
 - $b + \beta = -1 \implies r_1 + r_2 > 1$
Further **homological arguments** show

- $p, \ q \geq 2 \ \Rightarrow \ b + \beta \neq -2$ and
 - $b + \beta = -1 \ \Rightarrow \ r_1 + r_2 > 1$

<table>
<thead>
<tr>
<th>$b + \beta$</th>
<th>$K_n : L$-space knot</th>
<th>$p, q \geq 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\leq -3, \ 1 \leq$</td>
<td>$\forall n$</td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>$r_1 + r_2 \geq 1$</td>
<td>$n \geq -1$</td>
</tr>
<tr>
<td>0</td>
<td>$n \geq -1, \ n \leq -1/\varepsilon$</td>
<td></td>
</tr>
</tbody>
</table>

K_n is an L–space knot for any integer n.

Kimihiko Motegi

L–space knots and twisting operation

Knots and Low Dimensional Manifolds
Busan, Korea
25 August, 2014

/ 46
Further **homological arguments** show

- $p, q \geq 2 \implies b + \beta \neq -2$ and

 $b + \beta = -1 \implies r_1 + r_2 > 1$

<table>
<thead>
<tr>
<th>$b + \beta$</th>
<th>$K_n : L$-space knot</th>
<th>$p, q \geq 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\leq -3, 1 \leq$</td>
<td>$\forall n$</td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>$r_1 + r_2 \geq 1$</td>
<td>$n \geq -1$</td>
</tr>
<tr>
<td>0</td>
<td>$n \geq -1, n \leq -1/\varepsilon$</td>
<td></td>
</tr>
</tbody>
</table>

K_n is an L–space knot for any integer $n \geq -1$.
\(l^2 \geq 2pq \quad \Rightarrow \quad b + \beta \neq -1, \ 0 \)
- $l^2 \geq 2pq \Rightarrow b + \beta \neq -1, 0$

<table>
<thead>
<tr>
<th>$b + \beta$</th>
<th>$K_n : L$–space knot</th>
<th>$p, q \geq 2$</th>
<th>$l^2 \geq 2pq$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\leq -3, 1 \leq$</td>
<td>$\forall n$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\(l^2 \geq 2pq \implies b + \beta \neq -1, 0 \)

<table>
<thead>
<tr>
<th>(b+\beta)</th>
<th>(K_n : \text{(L)-space knot})</th>
<th>(p, q \geq 2)</th>
<th>(l^2 \geq 2pq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\leq -3, 1 \leq)</td>
<td>(\forall n)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(K_n \) is an \(L \)–space knot for all integers \(n \).
twisted torus knot $K(p, q; r, n)$

$2 \leq r \leq p+q$

n-twist along c

r strands
Application – twisted torus knots

Vafaee studies $K(p, kp; r, n)$ with $p \geq 2$, $k \geq 1$, $0 < r < p$, $n > 0$ from a viewpoint of knot Floer homology.
Making use of \textit{seiferters} for \((T_{p,q}, pq)\), as an application of Theorem 3, we obtain:
Application – twisted torus knots

Making use of seiferters for $(T_{p,q}, pq)$, as an application of Theorem 3, we obtain:

Theorem 4 (L–space twisted torus knots)

The following twisted torus knots are L–space knots for all integers n.

- $K(p, q; p + q, n)$ with $p, q \geq 2$
- $K(3p + 1, 2p + 1; 4p + 1, n)$ with $p > 0$
- $K(3p + 2, 2p + 1; 4p + 3, n)$ with $p > 0$
Making use of seiferters for \((T_{p,q}, pq)\), as an application of Theorem 3, we obtain:

Theorem 4 (L–space twisted torus knots)

1. The following twisted torus knots are \textit{L–space knots} for \textit{all integers} \(n\).
 - \(K(p, q; p + q, n)\) with \(p, q \geq 2\)
 - \(K(3p + 1, 2p + 1; 4p + 1, n)\) with \(p > 0\)
 - \(K(3p + 2, 2p + 1; 4p + 3, n)\) with \(p > 0\)

2. The following twisted torus knots are \textit{L–space knots} for \textit{any} \(n \geq -1\).
 - \(K(p, q; p - q, n)\) with \(p, q \geq 2\)
 - \(K(2p + 3, 2p + 1; 2p + 2, n)\) with \(p > 0\)
In particular,

Corollary 5

For any torus knot $T_{p,q}$, we can take an unknotted circle c so that n–twist along c converts $T_{p,q}$ into an L–space knot K_n for all integers n.

Furthermore, $\{K_n\}_{|n|>3}$ is a set of mutually distinct hyperbolic L–space knots.
In particular,

Corollary 5

For any torus knot $T_{p,q}$, we can take an unknotted circle c so that n–twist along c converts $T_{p,q}$ into an L–space knot K_n for all integers n.

Furthermore, $\{K_n|n|>3\}$ is a set of mutually distinct hyperbolic L–space knots.

As we mentioned, for the trivial knot we can take infinitely many such unknotted circles.
Application – twisted Berge knots
Application – twisted Berge knots

- Most Berge’s lens space surgeries are “next to” lens # lens surgeries.
• Most Berge’s lens space surgeries are “next to” lens $\#$ lens surgeries.

\[(P(-2, 3, 7), 19)\]
• Most Berge’s lens space surgeries are “next to” lens ≠ lens surgeries.

(P(-2, 3, 7), 19)

lens space surgery
Most Berge’s lens space surgeries are “next to” lens surgery.

\[
\begin{align*}
&\text{lens surgery} & (T_{5,3}, 15) & \text{(-1)-twist} & (P(-2, 3, 7), 19) \\
&\text{lens surgery} & & & \text{lens space surgery}
\end{align*}
\]
Application – twisted Berge knots

- Most Berge’s lens space surgeries are “next to” lens $\#$ lens surgeries.

\[\text{lens} \# \text{lens surgery} \]
\[(T_{5,3}, 15) \]
\[\rightarrow \]
\[(-1)\text{-twist} \]
\[(P(-2, 3, 7), 19) \]

\[\text{lens space surgery} \]
Most Berge’s lens space surgeries are “next to” lens \# lens surgeries.
Most Berge’s lens space surgeries are “next to” lens \(\# \) lens surgeries. This observation, together with Theorem 3, proves:
Most Berge’s lens space surgeries are “next to” lens \# lens surgeries.

This observation, together with Theorem 3, proves:

Theorem 6

For any hyperbolic Berge knot K, there is an unknotted circle c such that n–twist along c converts K into an L–space knot K_n for infinitely many integers n.
Applying Hedden’s cabling construction, Baker and Moore prove:

For any integer \(N \), there is a non-hyperbolic \(L \)-space knot with tunnel number greater than \(N \).

and ask:

Question

Is there a hyperbolic, \(L \)-space knot with tunnel number greater than one?
Applying Hedden’s cabling construction, Baker and Moore prove:

- For any integer N, there is a non-hyperbolic L–space knot with tunnel number greater than N.
Applying Hedden’s cabling construction, Baker and Moore prove:

- For any integer N, there is a non-hyperbolic L–space knot with tunnel number greater than N.

and ask:

Question

Is there a hyperbolic, L–space knot with tunnel number greater than one?
Applying Hedden’s cabling construction, Baker and Moore prove:

- For any integer \(N \), there is a non-hyperbolic \(L \)–space knot with tunnel number greater than \(N \).

and ask:

Question

Is there a hyperbolic, \(L \)–space knot with tunnel number greater than one?

Theorem 7

There exist infinitely many hyperbolic, \(L \)–space knots with tunnel number greater than one.
• c_a and c_b are seiferters for $(T_{3,2}, 7)$ simultaneously.
• c_a and c_b are seiferters for $(T_{3,2}, 7)$ simultaneously.

• $\{K_{n,0}\}$ and $\{K_{0,n}\}$ are sets of mutually distinct hyperbolic knots with tunnel number 2. (Eudave–Muñoz–Jasso–Miyazaki–M)
\(c_a\) and \(c_b\) are seiferters for \((T_{3,2}, 7)\) simultaneously.

\(\{K_{n,0}\}\) and \(\{K_{0,n}\}\) are sets of mutually distinct hyperbolic knots with tunnel number 2. (Eudave=Muñoz-Jasso-Miyazaki-M)

\(K_{n,0}(196n + 71)\) and \(K_{0,n}(100n + 71)\) are Seifert fibered \(L\)-spaces, hence \(K_{n,0}\) and \(K_{0,n}\) are \(L\)-space knots.
Does there exist a hyperbolic, \(L \)-space knot with tunnel number greater than two?

Let \(K_n \) be a knot obtained from an \(L \)-space knot \(K \) by \(n \)-twist along an unknotted circle \(c \). If the twisted family \(f_{K_n} \) contains infinitely many \(L \)-space knots, then does \(K \) admit a Seifert surgery for which \(c \) is a seiferter?
• Does there exist a hyperbolic, L–space knot with tunnel number greater than two?
• Does there exist a hyperbolic, L–space knot with tunnel number greater than two?

• Let K_n be a knot obtained from an L–space knot K by n–twist along an unknotted circle c. If the twisted family $\{K_n\}$ contains infinitely many L–space knots, then does K admit a Seifert surgery for which c is a seiferter?