On the clasp number of a knot

Kengo Kawamura (Osaka City University)
joint work with
Teruhisa Kadokami (East China Normal University)

Knots and Low Dimensional Manifolds: a Satellite Conference of Seoul ICM 2014

August 25, 2014
Fact.

Every knot $K \subset S^3$ bounds a clasp disk D.

$c(D) :=$ the number of clasps of a clasp disk D.

$c(K) := \min\{c(D) \mid D: \text{a clasp disk of } K\} :$ the clasp number of K.

The clasp number of a knot
Proposition. [Shibuya '74]

\[\forall K, \max\{g(K), u(K)\} \leq c(K). \]

Remark.

Most of prime knots up to 10 crossings satisfy the equality above.

Question.

\[\exists K: \text{a prime knot s.t. } \max\{g(K), u(K)\} < c(K). \]
Main Theorem. [Kadokami–Kawamura]

\(K_n\): the knot as shown below \((n \in \mathbb{Z})\).

\(n\) is odd \(\implies\) \(K_n\) is prime & \(\max\{g(K_n), u(K_n)\} < c(K_n)\).

Outline of proof.

1. Confirm that \(g(K_n) = 2\) and \(u(K_n) \leq 2\) (and \(c(K_n) \leq 4\)).
2. Investigate about the primeness of \(K_n\).
3. Prove that \(n\) is odd \(\implies\) \(c(K_n) \geq 3\).
Proof of n is odd $\Rightarrow c(K_n) \geq 3$

$\nabla_K(z) \in \mathbb{Z}[z]$: the Conway polynomial of a knot K.

Lemma. [Kadokami–K.]

Suppose that a knot K has $\nabla_K(z) = 1 + a_2z^2 + a_4z^4$.

Then, $a_2 \equiv 2 \ (\text{mod} \ 4)$ and $a_4 \equiv 3 \ (\text{mod} \ 8) \Rightarrow c(K) \geq 3$.

Proof. (n is odd $\Rightarrow c(K_n) \geq 3$.)

The Conway polynomial of K_n is as follows:

$$\nabla_{K_n}(z) = 1 + 2nz^2 - (4n + 1)z^4.$$

If n is odd, then $2n \equiv 2 \ (\text{mod} \ 4)$ and $-(4n + 1) \equiv 3 \ (\text{mod} \ 8)$.

Therefore, by Lemma we have $c(K_n) \geq 3$.

\square
$c(K_n) \leq 4$

K_n:

$2n - 1$ half twists