COBORDISMS OF LEFSCHETZ FIBRATIONS ON 4-MANIFOLDS

Daniele Zuddas
Korea Institute for Advanced Study

http://newton.kias.re.kr/~zuddas zuddas@kias.re.kr
(Generalized) Lefschetz fibrations

\[f : V^{m+2k} \rightarrow M^{m+2} \]
(Generalized) Lefschetz fibrations

\[f : V^{m+2k} \to M^{m+2} \]

s.t. at critical points is locally equivalent to the map

\[\mathbb{R}^m \times \mathbb{C}^k \to \mathbb{R}^m \times \mathbb{C} \]

\[(x, z_1, \ldots, z_k) \mapsto (x, z_1^2 + \cdots + z_k^2) \]
(Generalized) Lefschetz fibrations

\[f : V^{m+2k} \to M^{m+2} \]

s.t. at critical points is locally equivalent to the map

\[\mathbb{R}^m \times \mathbb{C}^k \to \mathbb{R}^m \times \mathbb{C} \]

\[(x, z_1, \ldots, z_k) \mapsto (x, z_1^2 + \cdots + z_k^2) \]

Away from \(\text{Crit}(f) \subset M \), \(f \) is a fiber bundle

codim \(\text{Crit}(f) = 2 \).
(Generalized) Lefschetz fibrations

\[f: V^{m+2k} \to M^{m+2} \]

s.t. at critical points is locally equivalent to the map

\[\mathbb{R}^m \times \mathbb{C}^k \to \mathbb{R}^m \times \mathbb{C} \]

\[(x, z_1, \ldots, z_k) \mapsto (x, z_1^2 + \cdots + z_k^2) \]

Away from Crit(f) \subset M, f is a fiber bundle

codim Crit(f) = 2.

\[m = 0 \iff \text{ordinary Lefschetz fibration}. \]
(Generalized) Lefschetz fibrations

\[f: V^{m+2k} \to M^{m+2} \]

s.t. at critical points is locally equivalent to the map

\[\mathbb{R}^m \times \mathbb{C}^k \to \mathbb{R}^m \times \mathbb{C} \]

\[(x, z_1, \ldots, z_k) \mapsto (x, z_1^2 + \cdots + z_k^2) \]

Away from \(\text{Crit}(f) \subset M \), \(f \) is a fiber bundle

codim \(\text{Crit}(f) = 2 \).

\(m = 0 \iff \) ordinary Lefschetz fibration.

We assume \(k = 2 \iff \) the regular fiber is a surface \(F_g \) of some genus \(g \).
(Generalized) Lefschetz fibrations

\[f : V^{m+2k} \to M^{m+2} \]

s.t. at critical points is locally equivalent to the map

\[\mathbb{R}^m \times \mathbb{C}^k \to \mathbb{R}^m \times \mathbb{C} \]

\[(x, z_1, \ldots, z_k) \mapsto (x, z_1^2 + \cdots + z_k^2) \]

Away from \(\text{Crit}(f) \subset M \), \(f \) is a fiber bundle

codim \(\text{Crit}(f) = 2 \).

\(m = 0 \iff \) ordinary Lefschetz fibration.

We assume \(k = 2 \iff \) the regular fiber is a surface \(F_g \) of some genus \(g \).
(Generalized) Lefschetz fibrations

\[f : V^{m+2k} \to M^{m+2} \]

s.t. at critical points is locally equivalent to the map

\[\mathbb{R}^m \times \mathbb{C}^k \to \mathbb{R}^m \times \mathbb{C} \]
\[(x, z_1, \ldots, z_k) \mapsto (x, z_1^2 + \cdots + z_k^2) \]

Away from \(\text{Crit}(f) \subset M \), \(f \) is a fiber bundle
\(\text{codim} \text{Crit}(f) = 2 \).

\(m = 0 \iff \) ordinary Lefschetz fibration.

We assume \(k = 2 \iff \) the regular fiber is a surface \(F_g \) of some genus \(g \).

The monodromy of a meridian of \(\text{Crit}(f) \) is a Dehn twist about a curve \(c \subset F_g \).

We have the monodromy representation

\[\omega_f : \pi_1(M - \text{Crit}(f)) \to \text{Mod}_g. \]
Pullbacks

\[
\begin{array}{c}
V \\
\downarrow f \\
M
\end{array}
\]
Pullbacks

\[
\begin{array}{ccc}
V & \rightarrow & f \\
\downarrow & & \downarrow \\
N & \rightarrow & M
\end{array}
\]
Pullbacks

\[\left\{ \begin{array}{c}
\tilde{V} \xrightarrow{\tilde{q}} V \\
N \xrightarrow{q} M
\end{array} \right. \]

\text{Pullback of } f

\[q^*(f) \]

\[f \]
Pullbacks

\[\tilde{V} \xrightarrow{\tilde{q}} V \]

\[\tilde{V} \xrightarrow{\tilde{q}} V \quad \text{of } f \]

\[q^*(f) \]

\[N \xrightarrow{q} M \]

Fiber preserving

Pullback of \(f \)
Pullbacks

Pullback of f
$q^* (f)$

Fiber preserving

f-regular
iff q and $q|_{\partial N}$ transverse to f
Pullbacks

\[\begin{array}{ccc}
\tilde{V} & \xrightarrow{\tilde{q}} & V \\
\downarrow & & \downarrow f \\
N & \xrightarrow{q} & M \\
\end{array} \]

- Pullback of \(f \)
- Fiber preserving
- \(q^*(f) \)
- \(f \)-regular
- \(f \)-regular iff \(q \) and \(q|_{\partial N} \) are transverse to \(f \)

\(q: N \to M \) is \(f \)-regular iff \(q \) and \(q|_{\partial N} \) are transverse to \(f \).
Pullbacks

$q: N \to M$ is f-regular iff q and $q|_{\partial N}$ are transverse to f.

\[
\tilde{V} = \{(x, v) \in N \times V \mid q(x) = f(v)\}
\]

\[
(q^*(f))(x, v) = x
\]

\[
\tilde{q}(x, v) = v
\]
Pullbacks

$q: N \to M$ is f-regular iff q and $q_{|\partial N}$ are transverse to f.

\[
\tilde{V} = \{(x, v) \in N \times V \mid q(x) = f(v)\}
\]

\[(q^*(f))(x, v) = x\]

\[\tilde{q}(x, v) = v\]

$q^*(f)$ has the same fiber of f.
Universal Lefschetz fibrations
Universal Lefschetz fibrations

\[u: U \to M \text{ universal } \iff \forall f: V \to N \text{ with the same fiber is a pullback of } u \text{ for some } q: N \to M \text{ } u\text{-regular}. \]
Universal Lefschetz fibrations

$u: U \to M$ universal $\iff \forall f: V \to N$ with the same fiber is a pullback of u for some $q: N \to M$ u-regular.

\[
\begin{array}{c}
V \xrightarrow{\tilde{q}} U \\
f = q^*(u) \downarrow \downarrow u \\
N \xrightarrow{q} M
\end{array}
\]
Universal Lefschetz fibrations

\[u: U \to M \text{ universal} \iff \forall f: V \to N \text{ with the same fiber is a pullback of } u \text{ for some } q: N \to M \text{ } u\text{-regular.} \]

\[
\begin{align*}
V \xrightarrow{\tilde{q}} U \\
f = q^*(u) & \downarrow \quad \downarrow u \\
N \xrightarrow{q} M
\end{align*}
\]

In general we restrict to those \(f \) that belong to a given class of Lefschetz fibrations with fiber \(F: f \in \mathcal{L}(F) \). In this case we talk about \(\mathcal{L}(F) \)-universality.
Universal Lefschetz fibrations

\[u: U \to M \text{ universal} \iff \forall f: V \to N \text{ with the same fiber is a pullback of } u \text{ for some } q: N \to M \text{ } u\text{-regular}. \]

\[
\begin{align*}
V \xrightarrow{\tilde{q}} U \\
f = q^*(u) \downarrow \quad \downarrow u \\
N \xrightarrow{q} M
\end{align*}
\]

In general we restrict to those \(f \) that belong to a given class of Lefschetz fibrations with fiber \(F: f \in \mathcal{L}(F) \). In this case we talk about \(\mathcal{L}(F) \)-universality. In the following theorem, we refer to \(\mathcal{L}(F) \) as the class of Lefschetz fibrations over 2 or 3-manifolds.
There exist \(u_2 \) and \(u_3 \) that are universal for genus-\(g \) Lefschetz fibrations over 2- and 3-manifolds respectively. Moreover, universal Lefschetz fibrations can be characterized in terms of monodromy.

One of the main features of such \(u_i \) is that the monodromy representation \(\phi: u_i \mapsto \phi u_i \) is an isomorphism with \(\phi \) being the mapping class group of genus \(g \). Moreover,
Theorem (Z. 2012 & 2014). There exist u_2 and u_3 that are universal for genus-\(g\) Lefschetz fibrations over 2- and 3-manifolds respectively.
Theorem (Z. 2012 & 2014). There exist u_2 and u_3 that are universal for genus-g Lefschetz fibrations over 2- and 3-manifolds respectively. Moreover, universal Lefschetz fibrations can be characterized in terms of monodromy representations.
Theorem (Z. 2012 & 2014). There exist u_2 and u_3 that are universal for genus-g Lefschetz fibrations over 2- and 3-manifolds respectively. Moreover, universal Lefschetz fibrations can be characterized in terms of monodromy representations.

Actually, $u_2 : U_2^6 \to M_2^4$ and $u_3 : U_3^8 \to M_3^6$ can be constructed explicitly.

One of the the main features for such u_i is that the monodromy representation

$$\omega_{u_i} : \pi_1(M_i - \text{Crit}(u_i)) \to \text{Mod}_g$$

is an isomorphism, with Mod_g the mapping class group of genus g.

Theorem (Z. 2012 & 2014). There exist u_2 and u_3 that are universal for genus-g Lefschetz fibrations over 2- and 3-manifolds respectively. Moreover, universal Lefschetz fibrations can be characterized in terms of monodromy representations.

Actually, $u_2 : U_2^6 \rightarrow M_2^4$ and $u_3 : U_3^8 \rightarrow M_3^6$ can be constructed explicitly.

One of the the main features for such u_i is that the monodromy representation

$$\omega_{u_i} : \pi_1 (M_i - \text{Crit}(u_i)) \rightarrow \text{Mod}_g$$

is an isomorphism, with Mod_g the mapping class group of genus g. Moreover, our construction gives

$$M_2 = B^4 \cup \{2\text{-handles}\}.$$
Theorem (Z. 2012 & 2014). There exist u_2 and u_3 that are universal for genus-g Lefschetz fibrations over 2- and 3-manifolds respectively. Moreover, universal Lefschetz fibrations can be characterized in terms of monodromy representations.

Actually, $u_2: U_2^6 \to M_2^4$ and $u_3: U_3^8 \to M_3^6$ can be constructed explicitly.

One of the main features for such u_i is that the monodromy representation

$$\omega_{u_i}: \pi_1(M_i - \text{Crit}(u_i)) \to \text{Mod}_g$$

is an isomorphism, with Mod_g the mapping class group of genus g. Moreover, our construction gives

$$M_2 = B^4 \cup \{2\text{-handles}\}.$$

2-handles correspond to relators of a presentation of Mod_g (having Dehn twists as generators).
Construction of $u_2 : U_2^6 \rightarrow M_2^4$
Construction of \(u_2 : U_2^6 \rightarrow M_2^4 \)

Assume for simplicity \(g > 1 \).

\[
\text{Mod}_g = \langle \delta_1, \ldots, \delta_k \mid r_1, \ldots, r_l \rangle
\]

\(\delta_i \) a Dehn twist.
Construction of $u_2 : U_2^6 \to M_2^4$

Assume for simplicity $g > 1$.

$$\text{Mod}_g = \langle \delta_1, \ldots, \delta_k \mid r_1, \ldots, r_l \rangle$$

δ_i a Dehn twist.

Consider a Lefschetz fibration $v : V \to B^2$ with fiber F_g having $(\delta_1, \ldots, \delta_k)$ as the monodromy sequence.
Construction of $u_2: U_2^6 \rightarrow M_2^4$

Assume for simplicity $g > 1$.

$$\text{Mod}_g = \langle \delta_1, \ldots, \delta_k \mid r_1, \ldots, r_l \rangle$$

δ_i a Dehn twist.

Consider a Lefschetz fibration $v: V \rightarrow B^2$ with fiber F_g having $(\delta_1, \ldots, \delta_k)$ as the monodromy sequence.

v is universal for Lefschetz fibrations over surfaces with boundary (Z. 2012).
Let

\[v' = \text{id} \times v : B^2 \times V \to B^2 \times B^2 \cong B^4. \]
Let

\[v' = \text{id} \times v: B^2 \times V \rightarrow B^2 \times B^2 \cong B^4. \]

The critical image of \(v' \) is a collection of parallel trivial 2-disks in \(B^4 \).
Let
\[v' = \text{id} \times v: B^2 \times V \to B^2 \times B^2 \cong B^4. \]
The critical image of \(v' \) is a collection of parallel trivial 2-disks in \(B^4 \). So,
\[\pi_1(B^4 - \text{Crit}(v')) \cong \pi_1(S^3 - \partial(\text{Crit}(v'))) \cong \langle \delta_1, \ldots, \delta_k \rangle. \]
Let

\[v' = \text{id} \times v: B^2 \times V \to B^2 \times B^2 \cong B^4. \]

The critical image of \(v' \) is a collection of parallel trivial 2-disks in \(B^4 \). So,

\[\pi_1(B^4 - \text{Crit}(v')) \cong \pi_1(S^3 - \partial(\text{Crit}(v'))) \cong \langle \delta_1, \ldots, \delta_k \rangle. \]

The relators \(r_i \)'s are words in the \(\delta_i \)'s, so they can be represented by pairwise disjoint embedded loops

\[r_i \subset S^3 - \partial(\text{Crit}(v')). \]
Let
\[v' = \text{id} \times v : B^2 \times V \to B^2 \times B^2 \cong B^4. \]
The critical image of \(v' \) is a collection of parallel trivial 2-disks in \(B^4 \). So,
\[\pi_1(B^4 - \text{Crit}(v')) \cong \pi_1(S^3 - \partial(\text{Crit}(v'))) \cong \langle \delta_1, \ldots, \delta_k \rangle. \]
The relators \(r_i \)'s are words in the \(\delta_i \)'s, so they can be represented by pairwise disjoint embedded loops
\[r_i \subset S^3 - \partial(\text{Crit}(v')). \]
The monodromy representation
\[\omega_{v'} : \pi_1(B^4 - \text{Crit}(v')) \to \text{Mod}_g \]
is surjective. We kill the kernel by adding 2-handles \(H_i^2 \) to \(B^4 \) along \(r_i \) with an arbitrary framing (for example with framing 0).
Let

\[v' = \text{id} \times v: B^2 \times V \to B^2 \times B^2 \cong B^4. \]

The critical image of \(v' \) is a collection of parallel trivial 2-disks in \(B^4 \). So,

\[\pi_1(B^4 - \text{Crit}(v')) \cong \pi_1(S^3 - \partial(\text{Crit}(v'))) \cong \langle \delta_1, \ldots, \delta_k \rangle. \]

The relators \(r_i \)'s are words in the \(\delta_i \)'s, so they can be represented by pairwise disjoint embedded loops

\[r_i \subset S^3 - \partial(\text{Crit}(v')). \]

The monodromy representation

\[\omega_{v'} : \pi_1(B^4 - \text{Crit}(v')) \to \text{Mod}_g \]

is surjective. We kill the kernel by adding 2-handles \(H^2_i \) to \(B^4 \) along \(r_i \) with an arbitrary framing (for example with framing 0). Let \(M_2 \) be the resulting 4-manifold:

\[r_i \in \ker(\omega_{v'}) \implies v' \text{ extends over } H^2_i \sim \sim u_2. \]
Lefschetz cobordism groups

Fix the fiber genus g and the dimension m of the base manifolds.
Lefschetz cobordism groups

Fix the fiber genus g and the dimension m of the base manifolds.

$$h: W \to N$$
Lefschetz cobordism groups

Fix the fiber genus g and the dimension m of the base manifolds.

$$h: W \to N \sim \sim \partial h: \partial W \to \partial N$$
Lefschetz cobordism groups

Fix the fiber genus g and the dimension m of the base manifolds.

$$h: W \rightarrow N \sim h: \partial W \rightarrow \partial N$$

$$f: V \rightarrow M$$
Lefschetz cobordism groups

Fix the fiber genus g and the dimension m of the base manifolds.

\[
\begin{align*}
 h: W &\to N \sim \partial h: \partial W \to \partial N \\
 f: V &\to M \sim -f: (-V) \to (-M)
\end{align*}
\]
Lefschetz cobordism groups

Fix the fiber genus g and the dimension m of the base manifolds.

$$h: W \to N \quad \sim \quad \partial h: \partial W \to \partial N$$

$$f: V \to M \quad \sim \quad -f: (-V) \to (-M)$$

$$f_1 + f_2 = f_1 \sqcup f_2$$
Lefschetz cobordism groups

Fix the fiber genus g and the dimension m of the base manifolds.

\[
\begin{align*}
 h: W \to N & \sim \sim \partial h: \partial W \to \partial N \\
 f: V \to M & \sim \sim -f: (-V) \to (-M)
\end{align*}
\]

\[
f_1 + f_2 = f_1 \sqcup f_2
\]

\[
f_1: V_1 \to M_1 \quad \text{and} \quad f_2: V_2 \to M_2
\]

are cobordant iff

\[
f_1 - f_2 = \partial h
\]

for a Lefschetz fibration $h: W \to N$.
Lefschetz cobordism groups

Fix the fiber genus g and the dimension m of the base manifolds.

$$h: W \to N \quad \sim \quad \partial h: \partial W \to \partial N$$

$$f: V \to M \quad \sim \quad -f: (-V) \to (-M)$$

$$f_1 + f_2 = f_1 \sqcup f_2$$

Let U_g be the set of equivalence classes.

$f_1: V_1 \to M_1$ and $f_2: V_2 \to M_2$

are cobordant iff

$$f_1 - f_2 = \partial h$$

for a Lefschetz fibration $h: W \to N$.

Let $\Lambda(g, m)$ be the set of equivalence classes.

It’s an abelian group called the Lefschetz cobordism group.
A canonical homomorphism
A canonical homomorphism

\[f : V \to M \]
A canonical homomorphism

\[f : V \to M \quad \sim \sim \quad f_* : \Omega_n(M) \to \Lambda(g, n) \]
A canonical homomorphism

\[f: V \rightarrow M \quad \sim \sim \quad f_*: \Omega_n(M) \rightarrow \Lambda(g, n) \]

\[[q: N \rightarrow M] \mapsto [q^*(f)] \]
A canonical homomorphism

\(\forall n \in \mathbb{N} \) we have a homomorphism induced by \(f \)

\[f : V \to M \quad \sim \quad f_* : \Omega_n(M) \to \Lambda(g, n) \]

\[[q : N \to M] \mapsto [q^*(f)] \]
A canonical homomorphism

∀n ∈ N we have a homomorphism induced by f

\[f : V \to M \sim \sim f_\ast : \Omega_n(M) \to \Lambda(g, n) \]

\[[q : N \to M] \mapsto [q^\ast(f)] \]

\(\Omega_n(M) \) is the n-th bordism group of M (a topological invariant), whose elements are bordism classes of maps

\[q : N \to M \]

with N a closed oriented n-manifold.
A canonical homomorphism

∀n ∈ ℕ we have a homomorphism induced by f

\[
f : V \to M \quad \sim \sim \quad f_* : \Omega_n(M) \to \Lambda(g, n)
\]

\[
[q : N \to M] \mapsto [q^*(f)]
\]

\(\Omega_n(M)\) is the n-th bordism group of \(M\) (a topological invariant), whose elements are bordism classes of maps

\[
q : N \to M
\]

with \(N\) a closed oriented \(n\)-manifold.

\(q\) is bordant to \(q' : N' \to M\) \iff \exists a simultaneous extension \(Q : W \to M\) with \(\partial W = N \sqcup (-N')\).
As an application of universal Lefschetz fibrations we get:
As an application of universal Lefschetz fibrations we get:

Corollary. $u: U \to M$ universal with respect to Lefschetz fibrations over n-manifolds implies $u_*: \Omega_n(M) \to \Lambda(g, n)$ surjective. So, $u_{2*}: \Omega_2(M_2) \to \Lambda(g, 2)$, $u_{3*}: \Omega_2(M_3) \to \Lambda(g, 2)$, and $u_{3*}: \Omega_3(M_3) \to \Lambda(g, 3)$ are surjective.
As an application of universal Lefschetz fibrations we get:

Corollary. $u: U \to M$ universal with respect to Lefschetz fibrations over n-manifolds $\implies u_*: \Omega_n(M) \to \Lambda(g, n)$ surjective. So, $u_{2*}: \Omega_2(M_2) \to \Lambda(g, 2)$, $u_{3*}: \Omega_2(M_3) \to \Lambda(g, 2)$, and $u_{3*}: \Omega_3(M_3) \to \Lambda(g, 3)$ are surjective.

Under certain conditions, the natural homomorphism

$$
\mu: \Omega_n(M) \to H_n(M)
$$

$$
[q: N \to M] \mapsto q_*([N])
$$

is an isomorphism.
As an application of universal Lefschetz fibrations we get:

Corollary. \(u: U \to M \) universal with respect to Lefschetz fibrations over \(n \)-manifolds \(\implies u_*: \Omega_n(M) \to \Lambda(g,n) \) surjective. So, \(u_2*: \Omega_2(M_2) \to \Lambda(g,2) \), \(u_3*: \Omega_2(M_3) \to \Lambda(g,2) \), and \(u_3*: \Omega_3(M_3) \to \Lambda(g,3) \) are surjective.

Under certain conditions, the natural homomorphism

\[
\mu: \Omega_n(M) \to H_n(M)
\]

\[
[q: N \to M] \mapsto q_*([N])
\]

is an isomorphism.

This is the case for the universal Lefschetz fibration \(u_2: U_2 \to M_2 \). That is,

\[
\Omega_2(M_2) \cong H_2(M_2) \cong \mathbb{Z}^k
\]
As an application of universal Lefschetz fibrations we get:

Corollary. $u: U \to M$ universal with respect to Lefschetz fibrations over n-manifolds $\implies u_*: \Omega_n(M) \to \Lambda(g, n)$ surjective. So, $u_{2*}: \Omega_2(M_2) \to \Lambda(g, 2)$, $u_{3*}: \Omega_2(M_3) \to \Lambda(g, 2)$, and $u_{3*}: \Omega_3(M_3) \to \Lambda(g, 3)$ are surjective.

Under certain conditions, the natural homomorphism

$$
\mu: \Omega_n(M) \to H_n(M)
$$

$$
[q: N \to M] \mapsto q_*([N])
$$

is an isomorphism.

This is the case for the universal Lefschetz fibration $u_2: U_2 \to M_2$. That is,

$$
\Omega_2(M_2) \cong H_2(M_2) \cong \mathbb{Z}^k
$$

hence $\Lambda(g, 2)$ is a finitely generated abelian group ($k = \#\{\text{relators}\}$).

Consequence: $\Lambda(g, 2)$ is generated by the relators in a presentation of Mod_g.
Final comments
Final comments

Cobordism classes of surface bundles over surfaces are classified by $H_2(\text{Mod}_g)$.

Final comments

Cobordism classes of surface bundles over surfaces are classified by $H_2(\text{Mod}_g)$. So, there is a homomorphism

$$\varphi: H_2(\text{Mod}_g) \to \Lambda(g, 2)$$

given by considering a bundle as a Lefschetz fibration without critical points.
Final comments

Cobordism classes of surface bundles over surfaces are classified by $H_2(\text{Mod}_g)$. So, there is a homomorphism

$$\varphi: H_2(\text{Mod}_g) \to \Lambda(g, 2)$$

given by considering a bundle as a Lefschetz fibration without critical points.

For $g \geq 3$, φ is injective. This follows from the fact that $\text{Mod}_{g \geq 3}$ is perfect (Powell 1978).
Final comments

Cobordism classes of surface bundles over surfaces are classified by $H_2(\text{Mod}_g)$. So, there is a homomorphism

$$\varphi: H_2(\text{Mod}_g) \to \Lambda(g, 2)$$

given by considering a bundle as a Lefschetz fibration without critical points.

For $g \geq 3$, φ is injective. This follows from the fact that $\text{Mod}_{g \geq 3}$ is perfect (Powell 1978).

We have

$$H_2(\text{Mod}_g) \cong \mathbb{Z} \quad (g \geq 4)$$

(Harer 1982 (incorrect) and 1985 for $g \geq 5$, later Korkmaz & Stipsicz 2003 for $g \geq 4$, based on work of Pitsch 1999).
Questions
Questions

(1) How can we compute \(\Lambda(g, m) \)?
Questions

(1) How can we compute $\Lambda(g, m)$?

(2) In light of $H_2(\text{Mod}_g) \subset \Lambda(g, 2)$, $g \geq 3$, may we consider $\Lambda(g, 2)$ as an “enhanced” second homology of Mod_g?
Questions

(1) How can we compute $\Lambda(g, m)$?

(2) In light of $H_2(\text{Mod}_g) \subset \Lambda(g, 2)$, $g \geq 3$, may we consider $\Lambda(g, 2)$ as an “enhanced” second homology of Mod_g?

(3) What properties of Mod_g reflect to $\Lambda(g, 2)$?
Questions

(1) How can we compute $\Lambda(g, m)$?

(2) In light of $H_2(\text{Mod}_g) \subset \Lambda(g, 2)$, $g \geq 3$, may we consider $\Lambda(g, 2)$ as an “enhanced” second homology of Mod_g?

(3) What properties of Mod_g reflect to $\Lambda(g, 2)$?

(4) How to construct Lefschetz fibrations that are universal with respect to higher dimensional base manifolds?
Questions

(1) How can we compute $\Lambda(g,m)$?

(2) In light of $H_2(\text{Mod}_g) \subset \Lambda(g, 2)$, $g \geq 3$, may we consider $\Lambda(g, 2)$ as an “enhanced” second homology of Mod_g?

(3) What properties of Mod_g reflect to $\Lambda(g, 2)$?

(4) How to construct Lefschetz fibrations that are universal with respect to higher dimensional base manifolds?

(5) Is there a completion of the universal bundle $E\text{Mod}_g \to B\text{Mod}_g$ which is a universal Lefschetz fibration (for all base manifolds)?
Thank you for your attention!!