On the sum of tangle diagrams with certain symmetry

Byeorhi Kim

Department of Mathematics
College of Natural Sciences
Kyungpook National University

Aug 25. 2014
1. REVIEWS

2. CONSTRUCTION
 - Deformation of tangle diagram
 - Sum of two deformed tangle diagrams
 - Link diagram as the sum of two deformed tangle diagrams with certain symmetry

3. SOME PROPERTIES OF LINK DIAGRAM WITH CERTAIN SYMMETRY
Definitions

A $2n$-tangle is a pair of the unit 3-ball B in \mathbb{R}^3 and n-arcs properly embedded in B so that the endpoints of n-arcs lie on the unit circle in the yz-plane.

A $2n$-tangle diagram is the projection of $2n$-tangle onto yz-plane added over/under information to each of the double point. In this talk, we consider $2n$-tangle diagrams with $2n$-endpoints.
Definition
A $2n$-tangle diagram is said to be *descending* if we can assign suitable height to each arc so that the crossing between arcs are compatible with the height.

Definition
A $2n$-tangle diagram is said to be *alternating* if the crossings in the tangle alternate from under to over as we go along any arc of the weave.
Definition
For given two $2n$-tangle diagrams T_1 and T_2, we can get a link diagram $T_1 \boxplus T_2$ on the plane in \mathbb{R}^2 or 2-sphere S^2, called a sum of T_1 and T_2, by connecting them naturally.
Let T be a $2n$-tangle diagram. Fix a point P on the circle of T except $2n$-endpoints. A deformed tangle diagram (T, P) is a diagram obtained by cutting the circle of T at the point P. We get two deformed tangle diagrams from T by choosing a direction of circle.
Sum of two deformed tangle diagrams

Let \((T_1, P_1)\) and \((T_2, P_2)\) be two deformed \(2n\)-tangle diagrams. A sum of two deformed tangle diagrams is defined by connecting each endpoint of \((T_1, P_1, -)\) with the endpoint in the same position of \((T_2, P_2, +)\) in parallel as described in Fig. Then it is well defined. We denote \((T_1, P_1) \boxplus (T_2, P_2)\).
Sum of two deformed tangle diagrams

Let \((T_1, P_1)\) and \((T_2, P_2)\) be two deformed \(2n\)-tangle diagrams. A sum of two deformed tangle diagrams is defined by connecting each endpoint of \((T_1, P_1, -)\) with the endpoint in the same position of \((T_2, P_2, +)\) in parallel as described in Fig. Then it is well defined. We denote \((T_1, P_1) \boxplus (T_2, P_2)\).
Sum of two deformed tangle diagrams

Let \((T_1, P_1)\) and \((T_2, P_2)\) be two deformed \(2n\)-tangle diagrams. A sum of two deformed tangle diagrams is defined by connecting each endpoint of \((T_1, P_1, -)\) with the endpoint in the same position of \((T_2, P_2, +)\) in parallel as described in Fig. Then it is well defined. We denote \((T_1, P_1) \boxplus (T_2, P_2)\).
Sum of two deformed tangle diagrams

Let \((T_1, P_1)\) and \((T_2, P_2)\) be two deformed \(2n\)-tangle diagrams. A sum of two deformed tangle diagrams is defined by connecting each endpoint of \((T_1, P_1, -)\) with the endpoint in the same position of \((T_2, P_2, +)\) in parallel as described in Fig. Then it is well defined. We denote \((T_1, P_1) \boxplus (T_2, P_2)\).
Link diagram as the sum of two deformed tangle diagrams with certain symmetry

Let T be a deformed $2n$-tangle diagram. Then naturally we get new deformed $2n$-tangle diagrams from T.

T^* is obtained by changing all crossings of T.

T^*_R is obtained by reflecting T horizontally.

T^*_R is obtained by changing all crossings of T^*_R.

The sum of a deformed tangle diagram T with a derived tangle diagram from T has certain symmetry. Now we will study about some properties of link diagrams with certain symmetry.
On the sum of tangle diagrams with certain symmetry
Note

Let \((T, P, -) \) be a deformed \(2n \)-tangle diagram.

1. \((T, P, +) \) is the same tangle diagram as the rotating \((T, P, -) \) through 180 degree.

2. \((T_R, P, +) \) is the same tangle diagram as the vertical reflection of \((T, P, -) \).
Some properties of link diagrams with certain symmetry

Theorem
Let \(T \) be a deformed \(2n \)-tangle diagram. Then \(T \boxplus T_R \) and \(T \boxplus T^*_R \) are link diagrams with \(n \)-components.

Proof.
Let \(\alpha_k \) be an arc of \(T \) and \(e_i, e_j \) endpoints of \(\alpha_k \). Let \((\alpha_R)_k \) be an arc of \(T_R \) corresponding to \(\alpha_k \) and \((e_R)_i, (e_R)_j \) endpoints of \((\alpha_R)_k \). Then \(e_i \) is connected with \((e_R)_i \) and \(e_j \) is connected with \((e_R)_j \). So we get a component by connecting \(\alpha_k \) and \((\alpha_R)_k \). On the other hand, \(\alpha_k \) is not connected with \((\alpha_R)_l \) for \(l \neq k \). Therefore \(T \boxplus T_R \) is a link diagram with \(n \)-components.
Example
Let T be a deformed 6-tangle diagram. Then $T \boxplus T_R$ and $T \boxplus T_R^*$ are link diagrams with 3-components.
Lemma

If T is a reduced alternating, then $T \boxplus T_R$ is a reduced alternating.

Sketch of proof.

Theorem

Let T be a deformed $2n$-tangle diagram. Then $c(T \boxplus T_R) \leq 2c(T)$. Moreover, if T is a reduced alternating, then $'\equiv'$ holds.
Theorem

Let T be a deformed $2n$-tangle diagram and L_1, \cdots, L_n n-components of $T \boxplus T_R^*$. Then $\text{lk}(L_k, L_l) = 0$ for $k \neq l$.

Sketch of proof.
Theorem
If the diagram of T contains a triangle composed a crossing with two end points, then the crossing can be removed in $T \boxplus T^*_R$.

Proof.
Let T be a deformed $2n$-tangle diagram. Let c_k be a crossing of T composed α_i and α_j. Suppose that α_i is over and α_j is under. Then $(\alpha^*_R)_i$ and $(\alpha^*_R)_j$ compose a crossing of T^*_R, where $(\alpha^*_R)_i$ and $(\alpha^*_R)_j$ are arcs in T^*_R corresponding to α_i and α_j, respectively. Since T^*_R is obtained by changing all crossings of T_R, $(\alpha^*_R)_i$ is over and $(\alpha^*_R)_j$ is under. So we get 2-bridges by connecting $\alpha_i \boxplus (\alpha^*_R)_i$ and $\alpha_j \boxplus (\alpha^*_R)_j$. By RM II, we can remove the crossing. \square
On the sum of tangle diagrams with certain symmetry

2 bridge

RM II
Example

Let T be a deformed $2n$-tangle diagram. If T is descending, then $T \boxplus T_R^*$ is the trivial link diagram with n-components.
Theorem
Let T be a deformed $2n$-tangle diagram. Then $T \boxplus T$ is a 2-periodic link diagram.

Example

trefoil figure-eight
Thank you for your attention.