The Heegaard genera of surface sums

Mingxing Zhang

Dalian University of Technology
1 Definitions

Compression body. A compression body is a 3-manifold W obtained from a closed connected orientable surface F by attaching 2-handles to $F \times [0, 1]$ along $F \times \{0\}$ and capping off any resulting 2-sphere boundary components with 3-handles.

\[\partial_+ W = F \times \{1\}. \]

\[\partial_- W = \partial W - \partial_+ W. \]

Specially, we say W is a handlebody if $\partial_- W = \emptyset$.
Heegaard splitting. Let M be a 3-manifold. If there is a closed surface S which cuts M into two compression bodies V and W, then we say M has a Heegaard splitting $M = V \cup_S W$.

S is called a Heegaard surface of M.

If the genus $g(S)$ of S is minimal among all the Heegaard surfaces of M, then $g(S)$ is called the genus of M, denoted by $g(M)$.
Surface sum of manifolds. Let M be a compact orientable 3-manifold, and F be a separating incompressible surface in M which cuts M into two 3-manifolds M_1 and M_2. Then M is called the surface sum of M_1 and M_2 along F, denoted by $M = M_1 \cup_F M_2$.

Self surface sum of manifolds. If F is a non-separating incompressible surface in M which cuts M into a 3-manifold M_1, then M is called the self surface sum of M_1 along F, denoted by $M = M_1 \cup_F$.
2 The Heegaard genus of surface sums

F is a closed surface:

Let $M = M_1 \cup_F M_2$, and $M_i = V_i \cup S_i W_i$ be a Heegaard splitting for M_i for $i = 1, 2$. Suppose that $F = \partial - W_1 = \partial - V_2$.

$M = \partial V_1 \times I \cup \{1 - \text{handles in } V_1\} \cup \{1 - \text{handles in } V_2\} \cup \{2 - \text{handles in } W_1\} \cup \{2 - \text{handles in } W_2\} \cup \partial - W_2 \times I$.

Then M has a natural Heegaard splitting $M = V \cup W$ called the amalgamation of $V_1 \cup S_1 W_1$ and $V_2 \cup S_2 W_2$.

$g(M) \leq g(M_1) + g(M_2) - g(F)$.
F is a 2-sphere:

$$g(M) = g(M_1) + g(M_2) \text{(Haken’s Lemma)}$$

For $g(F) > 0$:

There are some examples to show that it is possible that

$$g(M) \leq g(M_1) + g(M_2) - g(F) - n$$

for any given $n > 0$. (T. Kobayashi, R. Qiu, Y. Rieck and S. Wang; J. Schultens and R. Weidman)
There are also examples to show that:

\[g(M) = g(M_1) + g(M_2) - g(F), \]
under various different conditions describing the complicated gluing maps (D. Bachman, S. Schleimer and E. Sedgwick; M. Lackenby; T. Li; and J. Souto).

\[g(M) = g(M_1) + g(M_2) - g(F) \]
if both \(M_1 \) and \(M_2 \) have high distance Heegaard splittings, where the distance of a Heegaard splitting was introduced by Hempel (T. Kobayashi and R. Qiu).
3 Bounded surface sums

For F is a bounded surface

Let $M = M_1 \cup_F M_2$. Let $M_i = V_i \cup_{S_i} W_i$ be a Heegaard splitting of M_i such that $F \subset \partial_i \subset \partial_- W_i$ and $\partial_i \times [0, 1]$ is disjoint from S_i. Now let r_i be an unknotted arc in W_i such that $\partial_1 r_i \subset \partial_+ W_i$, $\partial_2 r_1 = \partial_2 r_2 \subset \text{int} F$. Let $N(r_1 \cup r_2)$ be a regular neighborhood of $r_1 \cup r_2$ in $W_1 \cup_F W_2$. Let $V = V_1 \cup N(r_1 \cup r_2) \cup V_2$, and W be the closure of $(W_1 \cup_F W_2) - N(r_1 \cup r_2)$. Then $M = V \cup W$ is a Heegaard splitting, which we say the surface sum of Heegaard splittings $M_1 = V_1 \cup W_1$ and $M_2 = V_2 \cup W_2$ along F.
Figure 1.

\[g(M) \leq g(M_1) + g(M_2). \]
For bounded surface F:

F is a disk:

$$g(M) = g(M_1) + g(M_2)$$ (disk version of Haken’s lemma)

F is an annulus: $g(M) = g(M_1) + g(M_2)$ or $g(M) < g(M_1) + g(M_2)$. (tunnel number) (T. Kobayashi; T. Kobayashi and Y. Rieck; K. Morimoto; J. Schultens; R. Qiu, K. Du, J. Ma and M. Zhang,...)
4 Reconstruction of the manifolds

Let $M = M_1 \cup_F M_2$, ∂_i be the component of ∂M_i containing F, and $\partial_i \times [0, 1]$ be a regular neighborhood of ∂_i in M_i with $\partial_i = \partial_i \times \{0\}$. We denote by P^i the surface $\partial_i \times \{1\}$. Let $M^i = M_i - \partial_i \times [0, 1]$ for $i = 1, 2$, and $M^* = \partial_1 \times [0, 1] \cup_F \partial_2 \times [0, 1]$. Then $M = M^1 \cup_{P^1} M^* \cup_{P^2} M^2$.
Figure 2.
5 The Heegaard splittings of M^*

M^* can be viewed as a surface sum of two I-bundles

$$M^* = \partial_1 \times I \cup_F \partial_2 \times I$$

Figure 3.
Figure 4.

\[M^* = \partial_1 \times I \cup \partial_3 \times I \]

\[M^* = \partial_2 \times I \cup \partial_3 \times I \]
Three traditional Heegaard splittings of M^*:

$M^* = V_1 \cup_{S_1} W_1.$

$g(S_1) = g(P_1) + g(P_2) = g(\partial_1) + g(\partial_2).$

$M^* = V_2 \cup_{S_2} W_2.$

$g(S_2) = g(P_1) + g(P_3) = 2g(\partial_1) + g(\partial_2) - \chi(F) + 1.$

$M^* = V_3 \cup_{S_3} W_3.$

$g(S_3) = g(P_2) + g(P_3) = g(\partial_1) + 2g(\partial_2) - \chi(F) + 1.$
6 Theorems

Theorem 1. Let M be a surface sum of two irreducible, ∂-irreducible 3-manifolds M_1 and M_2 along a bounded connected surface F, and ∂_i be the component of ∂M_i containing F. If both M_1 and M_2 have Heegaard splittings with distance at least $2(g(M_1) + g(M_2)) + 1$, then any minimal Heegaard splitting of M is the amalgamation of Heegaard splittings of M_1, M_2 and M^* along P^1 and P^2. (where M^1, M^2, P^1, P^2 as just defined)
Theorem 2. Under the assumptions of Theorem 1, if $\partial_i - F$ is connected for $i = 1, 2$, then

$$g(M) = \min\{g(M_1) + g(M_2), \alpha\},$$

where $\alpha = g(M_1) + g(M_2) + \frac{1}{2}(2\chi(F) + 2 - \chi(\partial_1) - \chi(\partial_2)) - \max\{g(\partial_1), g(\partial_2)\}$.

Furthermore $g(M) = g(M_1) + g(M_2)$ if and only if $\chi(F) \geq \frac{1}{2} \max\{\chi(\partial_1), \chi(\partial_2)\}$.
Theorem 3. Let M be a surface sum of two irreducible, ∂-irreducible 3-manifolds M_1 and M_2 along an annulus. If both M_1 and M_2 have Heegaard splittings with distance at least $2(g(M_1) + g(M_2)) + 1$, then $g(M) = g(M_1) + g(M_2)$.
Theorem 4. Let M be a self surface sum of an irreducible, ∂-irreducible 3-manifold M_1 along a compact surface F. If M_1 has a Heegaard splitting $V_1 \cup_{S_1} W_1$ such that the two copies of F obtained by cutting M along F lie in the same side of S_1 and $d(S_1) \geq 2g(M_1) + 2$, then $g(M) = g(M_1) + 1$.
Thanks!