Bipartite Intrinsically Knotted Graphs with 22 Edges

Hyoungjun Kim
Korea University
Joint work with Thomas Mattman and Seungsang Oh

August 25, 2014

Knots and Low Dimensional Manifolds
1. Introductions

2. Terminology

3. Sketch of proof
1 Introductions
2 Terminology
3 Sketch of proof
Introductions

We will take an embedded graph to mean a graph embedded in \mathbb{R}^3.

- A graph G is *intrinsically knotted* (IK) if every embedding of the graph contains a non-trivially knotted cycle.

- [Conway and Gordon]
 Every embedding of K_7 contains a knotted cycle.

- [Foisy]
 $K_{3,3,1,1}$ is an intrinsically knotted graph.
Introductions

- A graph H is *minor* of another graph G if H can be obtained from G by edge contracting or edge deleting some edges.

- A graph G is intrinsically knotted and has no proper minor which is intrinsically knotted, G is said to be *minor minimal intrinsically knotted*.

- [Robertson and Seymour]
 There are only finite number of minor minimal intrinsically knotted graphs.

Open Problem

Finding the complete set of minor minimal intrinsically knotted graphs.
- **∇-Y move** and **Y-∇ move**

- [Motwani, Raghunathan, and Saran]
 \(\nabla - Y \) move preserves intrinsic knottedness.

- [Flapan and Naimi]
 Some \(Y - \nabla \) moves do not preserve intrinsic knottedness.

- If \(G' \) is obtained from \(G \) by some \(\nabla - Y \) or \(Y - \nabla \) moves then \(G \) and \(G' \) are **cousin**. The set of all cousins of \(G \) is called the **\(G \) family**.
$E_9 + e$
$E_9 + e$

$K_7 \rightarrow H_8 \rightarrow H_9 \rightarrow H_{10} \rightarrow H_{11} \rightarrow H_{12}$

$F_9 \rightarrow F_{10} \rightarrow F_{10}$

$E_{10} \rightarrow E_{11}$

$C_{11} \rightarrow C_{12} \rightarrow C_{13} \rightarrow C_{14}$

$N_9 \rightarrow N_{10} \rightarrow N_{11} \rightarrow N_{12}$

$N'_9 \rightarrow N'_{10} \rightarrow N'_{11} \rightarrow N'_{12}$
Main Theorem

- A bipartite graph is a graph whose vertices can be divided into two disjoint sets A and B such that every edge connects a vertex in A to one in B.

- [Lee, Kim, Lee, and Oh], [Barsotti and Mattman]
 The only triangle-free intrinsically knotted graphs with 21 edges are H_{12} and C_{14}.

Main Theorem

There are exactly two bipartite intrinsically knotted graphs with 22 edges.
Two bipartite intrinsically knotted graphs with 22 edges

Figure: Cousin 89 of the $E_9 + e$ family

Figure: Cousin 110 of the $E_9 + e$ family
Terminology

For any two distinct vertices a and b,

- $G = (A, B, E)$: a bipartite graph with 22 edges whose partition has the parts A and B.

- $\hat{G}_{a,b} = (\hat{V}_{a,b}, \hat{E}_{a,b})$: the graph obtained from $G\{a, b\}$ by contracting one edge incident to a vertex of degree 1 or 2 repeatedly until no vertices of degree 1 or 2 exist. (removing one vertex means deleting interiors of all edges incident to it.)

- $\text{dist}(a, b)$: the distance between two vertices a and b says the number of edges in the shortest path connecting them.

- $\text{deg}(a)$: the degree of a vertex a.
Terminology

For any two distinct vertices a and b,

- $G = (A, B, E)$: a bipartite graph with 22 edges whose partition has the parts A and B.
- $\hat{G}_{a,b} = (\hat{V}_{a,b}, \hat{E}_{a,b})$: the graph obtained from $G\{a, b\}$ by contracting one edge incident to a vertex of degree 1 or 2 repeatedly until no vertices of degree 1 or 2 exist.
 (removing one vertex means deleting interiors of all edges incident to it.)
- dist(a, b): the distance between two vertices a and b says the number of edges in the shortest path connecting them.
- deg(a): the degree of a vertex a.
Terminology

For any two distinct vertices a and b,

- $G = (A, B, E)$: a bipartite graph with 22 edges whose partition has the parts A and B.

- $\hat{G}_{a,b} = (\hat{V}_{a,b}, \hat{E}_{a,b})$: the graph obtained from $G \setminus \{a, b\}$ by contracting one edge incident to a vertex of degree 1 or 2 repeatedly until no vertices of degree 1 or 2 exist. (removing one vertex means deleting interiors of all edges incident to it.)

- $\text{dist}(a, b)$: the distance between two vertices a and b says the number of edges in the shortest path connecting them.

- $\text{deg}(a)$: the degree of a vertex a.
For any two distinct vertices a and b,

- $G = (A, B, E)$: a bipartite graph with 22 edges whose partition has the parts A and B.
- $\hat{G}_{a,b} = (\hat{V}_{a,b}, \hat{E}_{a,b})$: the graph obtained from $G\setminus\{a, b\}$ by contracting one edge incident to a vertex of degree 1 or 2 repeatedly until no vertices of degree 1 or 2 exist. (removing one vertex means deleting interiors of all edges incident to it.)
- $\text{dist}(a, b)$: the distance between two vertices a and b says the number of edges in the shortest path connecting them.
- $\text{deg}(a)$: the degree of a vertex a.
Terminology

For any two distinct vertices a and b,

- $G = (A, B, E)$: a bipartite graph with 22 edges whose partition has the parts A and B.
- $\hat{G}_{a,b} = (\hat{V}_{a,b}, \hat{E}_{a,b})$: the graph obtained from $G\{a, b\}$ by contracting one edge incident to a vertex of degree 1 or 2 repeatedly until no vertices of degree 1 or 2 exist. (Removing one vertex means deleting interiors of all edges incident to it.)
- $\text{dist}(a, b)$: the distance between two vertices a and b says the number of edges in the shortest path connecting them.
- $\text{deg}(a)$: the degree of a vertex a.
Terminology

To count the number of edges of $\hat{G}_{a,b}$, we have some notations.
Terminology

To count the number of edges of $\hat{G}_{a,b}$, we have some notations.

- $E(a)$ is the set of edges which are incident to a.

$$E(a)$$
To count the number of edges of $\widehat{G}_{a,b}$, we have some notations.

- $V(a) = \{ c \in V \mid \text{dist}(a, c) = 1 \}$
Terminology

To count the number of edges of \(\hat{G}_{a,b} \), we have some notations.

- \(V_n(a) = \{ c \in V | \text{dist}(a, c) = 1, \text{deg}(c) = n \} \)
To count the number of edges of $\hat{G}_{a,b}$, we have some notations.

- $V_n(a) = \{ c \in V \mid \text{dist}(a, c) = 1, \deg(c) = n \}$
To count the number of edges of $\hat{G}_{a,b}$, we have some notations.

- $V_n(a, b) = V_n(a) \cap V_n(b)$.
To count the number of edges of $\hat{G}_{a,b}$, we have some notations.

- $V_Y(a,b) = \{ c \in V \mid \exists d \in V_3(a,b) \text{ such that } c \in V_3(d) \setminus \{a, b\} \}$
We have a count equation in $\hat{G}_{a,b}$:

$$|\hat{E}_{a,b}| = 22 - |E(a) \cup E(b)| - \left(|V_3(a)| + |V_3(b)| - |V_3(a, b)| + |V_4(a, b)| + |V_Y(a, b)| \right)$$
Terminology

A graph is *n-apex* if one can remove *n* vertices from it to obtain a planar graph.

Lemma 1

If G is a 2-apex, then G is not intrinsically knotted.

Lemma 2

If $|\hat{E}_{a,b}| \leq 8$, then $\hat{G}_{a,b}$ is a planar graph. Thus G is not intrinsically knotted.

Lemma 3

If $|\hat{E}_{a,b}| = 9$ and it is not homeomorphic to $K_3, 3$, then G is not intrinsically knotted.
Terminology

A graph is *n-apex* if one can remove *n* vertices from it to obtain a planar graph.

Lemma 1
If \(G\) is a 2-apex, then \(G\) is not intrinsically knotted.

Lemma 2
If \(|\hat{E}_{a,b}| \leq 8\), then \(\hat{G}_{a,b}\) is a planar graph. Thus \(G\) is not intrinsically knotted.

Lemma 3
If \(|\hat{E}_{a,b}| = 9\) and it is not homeomorphic to \(K_{3,3}\), then \(G\) is not intrinsically knotted.
Terminology

A graph is \textit{n-apex} if one can remove \(n\) vertices from it to obtain a planar graph.

\begin{itemize}
\item \textbf{Lemma 1}
If \(G\) is a 2-apex, then \(G\) is not intrinsically knotted.
\item \textbf{Lemma 2}
If \(|\hat{E}_{a,b}| \leq 8\), then \(\hat{G}_{a,b}\) is a planar graph. Thus \(G\) is not intrinsically knotted.
\item \textbf{Lemma 3}
If \(|\hat{E}_{a,b}| = 9\) and it is not homeomorphic to \(K_{3,3}\), then \(G\) is not intrinsically knotted.
\end{itemize}
A graph is *n-apex* if one can remove *n* vertices from it to obtain a planar graph.

Lemma 1

If \(G\) is a 2-apex, then \(G\) is not intrinsically knotted.

Lemma 2

If \(|\hat{E}_{a,b}| \leq 8\), then \(\hat{G}_{a,b}\) is a planar graph. Thus \(G\) is not intrinsically knotted.

Lemma 3

If \(|\hat{E}_{a,b}| = 9\) and it is not homeomorphic to \(K_{3,3}\), then \(G\) is not intrinsically knotted.
Contents

1. Introductions

2. Terminology

3. Sketch of proof
How to prove the Main Theorem

- Construction all possible such bipartite graph G with 22 edges,
- Deleting two suitable vertices a and b of G,
- Counting the number of edges of $\hat{G}_{a,b}$.

If $|\hat{E}_{a,b}| \leq 9$, we will show that $\hat{G}_{a,b}$ is planar.
If not, we will show that G is an intrinsically knotted graph.

Let a be one of vertices with maximal degree in G.
The proof is divided into three parts according to the degree of a.

- Any graph G with $\deg(a) \geq 6$ cannot be intrinsically knotted.
- The only bipartite intrinsically knotted graph with $\deg(a) = 5$ is cousin 110 of the $E_9 + e$ family.
- The only bipartite intrinsically knotted graph with $\deg(a) = 4$ is cousin 89 of the $E_9 + e$ family.
How to prove the Main Theorem

- Construction all possible such bipartite graph G with 22 edges,
- Deleting two suitable vertices a and b of G,
- Counting the number of edges of $\hat{G}_{a,b}$.

If $|\hat{E}_{a,b}| \leq 9$, we will show that $\hat{G}_{a,b}$ is planar.
If not, we will show that G is an intrinsically knotted graph.

Let a be one of vertices with maximal degree in G.

The proof is divided into three parts according to the degree of a.

- Any graph G with $\deg(a) \geq 6$ cannot be intrinsically knotted.
- The only bipartite intrinsically knotted graph with $\deg(a) = 5$ is cousin 110 of the $E_9 + e$ family.
- The only bipartite intrinsically knotted graph with $\deg(a) = 4$ is cousin 89 of the $E_9 + e$ family.
How to prove the Main Theorem

- Construction all possible such bipartite graph G with 22 edges,
- Deleting two suitable vertices a and b of G,
- Counting the number of edges of $\hat{G}_{a,b}$.

If $|\hat{E}_{a,b}| \leq 9$, we will show that $\hat{G}_{a,b}$ is planar.
If not, we will show that G is an intrinsically knotted graph.

Let a be one of vertices with maximal degree in G.

The proof is divided into three parts according to the degree of a.

- Any graph G with $\text{deg}(a) \geq 6$ cannot be intrinsically knotted.
- The only bipartite intrinsically knotted graph with $\text{deg}(a) = 5$ is cousin 110 of the $E_9 + e$ family.
- The only bipartite intrinsically knotted graph with $\text{deg}(a) = 4$ is cousin 89 of the $E_9 + e$ family.
How to prove the Main Theorem

- Construction all possible such bipartite graph G with 22 edges,
- Deleting two suitable vertices a and b of G,
- Counting the number of edges of $\hat{G}_{a,b}$.

If $|\hat{E}_{a,b}| \leq 9$, we will show that $\hat{G}_{a,b}$ is planar. If not, we will show that G is an intrinsically knotted graph.

Let a be one of vertices with maximal degree in G. The proof is divided into three parts according to the degree of a.

- Any graph G with $\deg(a) \geq 6$ cannot be intrinsically knotted.
- The only bipartite intrinsically knotted graph with $\deg(a) = 5$ is cousin 110 of the $E_9 + e$ family.
- The only bipartite intrinsically knotted graph with $\deg(a) = 4$ is cousin 89 of the $E_9 + e$ family.
\[\text{deg}(a) \geq 6 \]

\[\text{deg}(a) \geq 6 \]

\[|\hat{E}_{a,b}| \leq 22 - |E(a) \cup E(b)| - \{|V_3(a)| + |V_3(b)| - |V_3(a, b)| + |V_4(a, b)|\} = 7 \]
\(\text{deg}(a) \geq 6 \)

\[|\hat{E}_{a,b}| \leq 22 - |E(a) \cup E(b)| - \{|V_3(a)| + |V_3(b)| - |V_3(a, b)| + |V_4(a, b)|\} = 7 \]
\[\text{deg}(a) = 5\]

The example of an intrinsically knotted graph.

Cousin 110 of the $E_9 + e$ family
deg(a) = 4

The example of an intrinsically knotted graph.

Cousin 89 of the $E_9 + e$ family
Thanks for listening