Non-surjective satellite operators and piecewise-linear concordance

아담 사이먼 레빈

Princeton University

ICM Satellite Conference on Knots and Low Dimensional Manifolds
August 22, 2014
Which knots $K \subset \mathbb{R}^3$ (or S^3) can occur as cross-sections of embedded spheres in \mathbb{R}^4 (or S^4)?
Concordance

Which knots $K \subset \mathbb{R}^3$ (or S^3) can occur as cross-sections of embedded spheres in \mathbb{R}^4 (or S^4)?

Equivalently, which knots in \mathbb{R}^3 (or S^3) bound properly embedded disks in \mathbb{R}^4_+ (or D^4)?
Concordance

Definition

A knot $K \subset S^3$ is

- \textbf{(smoothly) slice} if it is the boundary of a smoothly embedded disk in D^4;
A knot $K \subset S^3$ is

- **(smoothly) slice** if it is the boundary of a smoothly embedded disk in D^4;
- **topologically slice** if it is the boundary of a locally flat disk in D^4 (i.e., a continuously embedded disk with a normal bundle).
A knot $K \subset S^3$ is

- **(smoothly) slice** if it is the boundary of a smoothly embedded disk in D^4;
- **topologically slice** if it is the boundary of a locally flat disk in D^4 (i.e., a continuously embedded disk with a normal bundle).

Knots K_1, K_2 are **smoothly/topologically concordant** if they cobound an embedded annulus in $S^3 \times I$, or equivalently if $K_1 \# - K_2$ is topologically/smoothly slice, where $-K = \overline{K}^r$.
Concordance

Definition

A knot $K \subset S^3$ is

- (smoothly) slice if it is the boundary of a smoothly embedded disk in D^4;
- topologically slice if it is the boundary of a locally flat disk in D^4 (i.e., a continuously embedded disk with a normal bundle).

Knots K_1, K_2 are smoothly/topologically concordant if they cobound an embedded annulus in $S^3 \times I$, or equivalently if $K_1 \# - K_2$ is topologically/smoothly slice, where $-K = \overline{K^r}$.

$C = \{\text{knots}\}/\text{smooth conc.} \quad C^{\text{top}} = \{\text{knots}\}/\text{top. conc.}$
Since D^4 is the cone on S^3, every knot bounds a piecewise-linear embedded disk in D^4!
Since D^4 is the cone on S^3, every knot bounds a piecewise-linear embedded disk in D^4!

In other words, Dehn’s Lemma holds for D^4.
Since D^4 is the cone on S^3, every knot bounds a piecewise-linear embedded disk in D^4!

In other words, Dehn’s Lemma holds for D^4.

Conjecture (Zeeman, 1963)

In an arbitrary compact, contractible 4-manifold X other than the 4-ball, not every knot $K \subset \partial X$ bounds a PL disk.
Theorem (Matsumoto–Venema, 1979)

There exists a non-compact, contractible 4-manifold with boundary $S^1 \times \mathbb{R}^2$ such that $S^1 \times \{\text{pt}\}$ does not bound an embedded PL disk.
Theorem (Matsumoto–Venema, 1979)

There exists a non-compact, contractible 4-manifold with boundary $S^1 \times \mathbb{R}^2$ such that $S^1 \times \{\text{pt}\}$ does not bound an embedded PL disk.

Theorem (Akbulut, 1990)

There exist a compact, contractible 4-manifold X and a knot $\gamma \subset \partial X$ that does not bound an embedded PL disk in X.
Akbulut’s example

Akbulut’s manifold X is the original Mazur manifold:

$$X = S^1 \times D^3 \cup_Q 2\text{-}handle,$$

$$Q \subset S^1 \times D^2 \subset \partial(S^1 \times D^3),$$

$$\gamma = S^1 \times \{\text{pt}\}.$$
Akbulut’s example

- Akbulut’s manifold X is the original Mazur manifold:

$$X = S^1 \times D^3 \cup_Q \text{2-handle},$$

$$Q \subset S^1 \times D^2 \subset \partial(S^1 \times D^3),$$

$$\gamma = S^1 \times \{\text{pt}\}.$$

- But γ bounds a smoothly embedded disk in a different contractible 4-manifold X' with $\partial X' = \partial X$.

\[\begin{array}{c}
X' \\
\gamma
\end{array} \]
Akbulut’s example

- Akbulut’s manifold X is the original Mazur manifold:

 \[X = S^1 \times D^3 \cup_Q 2\text{-handle}, \]
 \[Q \subset S^1 \times D^2 \subset \partial(S^1 \times D^3), \]
 \[\gamma = S^1 \times \{\text{pt}\}. \]

- But γ bounds a smoothly embedded disk in a different contractible 4-manifold X' with $\partial X' = \partial X$.

- In fact, $X' \cong X$, but not rel boundary.
Akbulut’s example

Akbulut’s manifold X is the original Mazur manifold:

$$X = S^1 \times D^3 \cup_Q 2\text{-handle},$$

$$Q \subset S^1 \times D^2 \subset \partial(S^1 \times D^3),$$

$$\gamma = S^1 \times \{\text{pt}\}.$$

But γ bounds a smoothly embedded disk in a different contractible 4-manifold X' with $\partial X' = \partial X$.

In fact, $X' \cong X$, but not rel boundary.
Theorem (L., 2014)

There exist a contractible 4-manifold X and a knot $\gamma \subset \partial X$ such that γ does not bound an embedded PL disk in any contractible manifold X' with $\partial X' = \partial X$.
Theorem (L., 2014)

There exist a contractible 4-manifold X and a knot $\gamma \subset \partial X$ such that γ does not bound an embedded PL disk in any contractible manifold X' with $\partial X' = \partial X$.

In place of the trefoil, can use any knot J with $\epsilon(J) = 1$, where ϵ is Hom’s concordance invariant.
There are many obstructions to a knot $K \subset S^3$ being topologically slice:
There are many obstructions to a knot $K \subset S^3$ being topologically slice:

- **Alexander polynomial**: if $K \subset S^3$ is slice,
 $$\Delta_K(t) = f(t)f(t^{-1})$$
 (Fox–Milnor)
There are many obstructions to a knot $K \subset S^3$ being topologically slice:

- **Alexander polynomial**: if $K \subset S^3$ is slice, $\Delta_K(t) = f(t)f(t^{-1})$ (Fox–Milnor)
- **Signature**: if K is slice, $\sigma(K) = 0$ (Murasugi)
There are many obstructions to a knot $K \subset S^3$ being topologically slice:

- **Alexander polynomial**: if $K \subset S^3$ is slice,
 $\Delta_K(t) = f(t)f(t^{-1})$ (Fox–Milnor)
- **Signature**: if K is slice, $\sigma(K) = 0$ (Murasugi)
- **Tristram–Levine signatures**
There are many obstructions to a knot $K \subset S^3$ being topologically slice:

- **Alexander polynomial:** if $K \subset S^3$ is slice,
 \[\Delta_K(t) = f(t)f(t^{-1}) \]
 (Fox–Milnor)

- **Signature:** if K is slice, $\sigma(K) = 0$ (Murasugi)

- **Tristram–Levine signatures**

- **Algebraic concordance group** (J. Levine)
There are many obstructions to a knot $K \subset S^3$ being topologically slice:

- **Alexander polynomial**: if $K \subset S^3$ is slice, $\Delta_K(t) = f(t)f(t^{-1})$ (Fox–Milnor)
- **Signature**: if K is slice, $\sigma(K) = 0$ (Murasugi)
- **Tristram–Levine signatures**
- **Algebraic concordance group** (J. Levine)
- **Casson–Gordon invariants**
There are many obstructions to a knot $K \subset S^3$ being topologically slice:

- **Alexander polynomial**: if $K \subset S^3$ is slice,
 \[\Delta_K(t) = f(t)f(t^{-1}) \] (Fox–Milnor)
- **Signature**: if K is slice, $\sigma(K) = 0$ (Murasugi)
- **Tristram–Levine signatures**
- **Algebraic concordance group** (J. Levine)
- **Casson–Gordon invariants**

Freedman: If $\Delta_K(t) \equiv 1$, then K is topologically slice; e.g., Whitehead doubles. But many such knots are not smoothly slice.
For $K \subset S^3$, we obtain several concordance invariants from knot Floer homology:
For $K \subset S^3$, we obtain several concordance invariants from knot Floer homology:

- $\tau(K) \in \mathbb{Z}$ (Ozsváth–Szabó, Rasmussen):
Smooth concordance obstructions

For $K \subset S^3$, we obtain several concordance invariants from knot Floer homology:

- $\tau(K) \in \mathbb{Z}$ (Ozsváth–Szabó, Rasmussen):
 - $\tau(K_1 \# K_2) = \tau(K_1) + \tau(K_2)$
For $K \subset S^3$, we obtain several concordance invariants from knot Floer homology:

- $\tau(K) \in \mathbb{Z}$ (Ozsváth–Szabó, Rasmussen):
 - $\tau(K_1 \# K_2) = \tau(K_1) + \tau(K_2)$
 - $|\tau(K)| \leq g_4(K)$.
For $K \subset S^3$, we obtain several concordance invariants from knot Floer homology:

- $\tau(K) \in \mathbb{Z}$ (Ozsváth–Szabó, Rasmussen):
 - $\tau(K_1 \# K_2) = \tau(K_1) + \tau(K_2)$
 - $|\tau(K)| \leq g_4(K)$.
- Whitehead doubles: If $\tau(K) > 0$, then $\tau(\text{Wh}_+(K)) = 1$, so $\text{Wh}_+(K)$ is not smoothly slice.
For $K \subset S^3$, we obtain several concordance invariants from knot Floer homology:

- $\tau(K) \in \mathbb{Z}$ (Ozsváth–Szabó, Rasmussen):
 - $\tau(K_1 \# K_2) = \tau(K_1) + \tau(K_2)$
 - $|\tau(K)| \leq g_4(K)$.
- Whitehead doubles: If $\tau(K) > 0$, then $\tau(\text{Wh}_+(K)) = 1$, so $\text{Wh}_+(K)$ is not smoothly slice.
- $\epsilon(K) \in \{-1, 0, 1\}$ (Hom):
For $K \subset S^3$, we obtain several concordance invariants from knot Floer homology:

- $\tau(K) \in \mathbb{Z}$ (Ozsváth–Szabó, Rasmussen):
 - $\tau(K_1 \# K_2) = \tau(K_1) + \tau(K_2)$
 - $|\tau(K)| \leq g_4(K)$.
 - Whitehead doubles: If $\tau(K) > 0$, then $\tau(\text{Wh}_+(K)) = 1$, so $\text{Wh}_+(K)$ is not smoothly slice.

- $\epsilon(K) \in \{-1, 0, 1\}$ (Hom):
 - Sign-additive under connected sum.
For $K \subset S^3$, we obtain several concordance invariants from knot Floer homology:

- $\tau(K) \in \mathbb{Z}$ (Ozsváth–Szabó, Rasmussen):
 - $\tau(K_1 \# K_2) = \tau(K_1) + \tau(K_2)$
 - $|\tau(K)| \leq g_4(K)$.
 - Whitehead doubles: If $\tau(K) > 0$, then $\tau(\text{Wh}_+(K)) = 1$, so $\text{Wh}_+(K)$ is not smoothly slice.

- $\epsilon(K) \in \{-1, 0, 1\}$ (Hom):
 - Sign-additive under connected sum.
 - Vanishes for slice knots.
For $K \subset S^3$, we obtain several concordance invariants from knot Floer homology:

- $\tau(K) \in \mathbb{Z}$ (Ozsváth–Szabó, Rasmussen):
 - $\tau(K_1 \# K_2) = \tau(K_1) + \tau(K_2)$
 - $|\tau(K)| \leq g_4(K)$.
 - Whitehead doubles: If $\tau(K) > 0$, then $\tau(Wh_+(K)) = 1$, so $Wh_+(K)$ is not smoothly slice.

- $\epsilon(K) \in \{-1, 0, 1\}$ (Hom):
 - Sign-additive under connected sum.
 - Vanishes for slice knots.
 - $\mathcal{C}/\ker(\epsilon)$ contains a $\mathbb{Z}\infty$ summand of topologically slice knots.
Expanded notions of smooth concordance

Every knot $K \subset S^3$ bounds a smooth disk in some 4-manifold X with $\partial X = S^3$; for instance, can take $X = (k \mathbb{C}P^2 \# l \overline{\mathbb{C}P^2}) \setminus B^4$.
Every knot $K \subset S^3$ bounds a smooth disk in some 4-manifold X with $\partial X = S^3$; for instance, can take $X = (k \mathbb{C}P^2 \# l \overline{\mathbb{C}P^2}) \setminus B^4$.

Definition

For a ring R, K is R–homology slice if it bounds a smoothly embedded disk in a smooth 4-manifold X with $\partial X = S^3$ and $\tilde{H}_\ast(X; R) = 0$.
Every knot $K \subset S^3$ bounds a smooth disk in some 4-manifold X with $\partial X = S^3$; for instance, can take $X = (k \mathbb{C}P^2 \# \overline{l \mathbb{C}P^2}) \setminus B^4$.

Definition

For a ring R, K is R–homology slice if it bounds a smoothly embedded disk in a smooth 4-manifold X with $\partial X = S^3$ and $\tilde{H}_*(X; R) = 0$.

K is pseudo-slice or exotically slice if it bounds a smoothly embedded disk in a smooth, contractible 4-manifold X with $\partial X = S^3$.

Every knot $K \subset S^3$ bounds a smooth disk in some 4-manifold X with $\partial X = S^3$; for instance, can take $X = (k \mathbb{C}P^2 \# l \overline{\mathbb{C}P^2}) \setminus B^4$.

Definition

- For a ring R, K is *R–homology slice* if it bounds a smoothly embedded disk in a smooth 4-manifold X with $\partial X = S^3$ and $\tilde{H}_*(X; R) = 0$.

- K is **pseudo-slice** or **exotically slice** if it bounds a smoothly embedded disk in a smooth, contractible 4-manifold X with $\partial X = S^3$. (Freedman: X is homeomorphic to D^4, but with a potentially exotic smooth structure.)
Let C_R and C_{ex} denote the corresponding concordance groups, so that

$$C \rightarrow C_{ex} \rightarrow C_{\mathbb{Z}} \rightarrow C_{\mathbb{Q}}.$$
Let C_R and C_{ex} denote the corresponding concordance groups, so that

$$C \rightarrow C_{ex} \rightarrow C_{\mathbb{Z}} \rightarrow C_{\mathbb{Q}}.$$

If the smooth 4-dimensional Poincaré conjecture holds, then $C_{ex} = C$.
Let C_R and C_{ex} denote the corresponding concordance groups, so that

$$C \rightarrow C_{ex} \rightarrow C_{\mathbb{Z}} \rightarrow C_{\mathbb{Q}}.$$

If the smooth 4-dimensional Poincaré conjecture holds, then $C_{ex} = C$.

Classical obstructions, Heegaard Floer obstructions all vanish if K is \mathbb{Q}–homology slice.
Let C_R and C_{ex} denote the corresponding concordance groups, so that

$$C \twoheadrightarrow C_{\text{ex}} \twoheadrightarrow C_{\mathbb{Z}} \twoheadrightarrow C_{\mathbb{Q}}.$$

If the smooth 4-dimensional Poincaré conjecture holds, then $C_{\text{ex}} = C$.

Classical obstructions, Heegaard Floer obstructions all vanish if K is \mathbb{Q}–homology slice.

Rasmussen’s invariant $s(K)$ (coming from Khovanov homology) was originally only proven to obstruct honest smooth concordance, but Kronheimer and Mrowka showed it actually descends to C_{ex}.
Knots K_1, K_2 in homology spheres Y_1, Y_2 are

\textit{R–homology concordant} if there is a smooth R-homology cobordism W from Y_1 to Y_2 (i.e. $H_*(Y_i; R) \xrightarrow{\cong} H_*(W; R)$) and a smooth annulus in W connecting K_1 and K_2;
Expanded notions of concordance

Definition

Knots K_1, K_2 in homology spheres Y_1, Y_2 are

- \textit{\textbf{R–homology concordant}} if there is a smooth R-homology cobordism W from Y_1 to Y_2 (i.e. $H_*(Y_i; R) \xrightarrow{\cong} H_*(W; R)$) and a smooth annulus in W connecting K_1 and K_2;

- \textit{\textbf{exotically concordant}} if there is a \mathbb{Z}-homology cobordism W as above such that $\pi_1(Y_i)$ normally generates $\pi_1(W)$.
Knots K_1, K_2 in homology spheres Y_1, Y_2 are

- **R–homology concordant** if there is a smooth R-homology cobordism W from Y_1 to Y_2 (i.e. $H_*(Y_i; R) \xrightarrow{\sim} H_*(W; R)$) and a smooth annulus in W connecting K_1 and K_2;

- **exotically concordant** if there is a \mathbb{Z}-homology cobordism W as above such that $\pi_1(Y_i)$ normally generates $\pi_1(W)$.

A knot $K \subset Y$ bounds a PL disk in a contractible 4-manifold X iff it is exotically cobordant to a knot in S^3, since we can delete a ball containing all the singularities.
Definition

Given a pattern knot $P \subset S^1 \times D^2$ and a companion knot $K \subset S^3$, the satellite knot $P(K) \subset S^3$ is the image of P under the Seifert framing $S^1 \times D^2 \hookrightarrow S^3$ of K.

![Diagram of satellite knots](image)
If K_1 is concordant to K_2, then $P(K_1)$ is concordant to $P(K_2)$; this gives us maps

$$
\begin{array}{cccc}
C & \rightarrow & C^{\text{ex}} & \rightarrow & C^\mathbb{Z} & \rightarrow & C^\mathbb{Q} \\
\downarrow P & & \downarrow P & & \downarrow P & & \downarrow P \\
C & \rightarrow & C^{\text{ex}} & \rightarrow & C^\mathbb{Z} & \rightarrow & C^\mathbb{Q}
\end{array}
$$
If K_1 is concordant to K_2, then $P(K_1)$ is concordant to $P(K_2)$; this gives us maps

$$
\begin{array}{cccc}
C & \rightarrow & C^{\text{ex}} & \rightarrow & C^\mathbb{Z} & \rightarrow & C^\mathbb{Q} \\
\downarrow P & & \downarrow P & & \downarrow P & & \downarrow P \\
C & \rightarrow & C^{\text{ex}} & \rightarrow & C^\mathbb{Z} & \rightarrow & C^\mathbb{Q}
\end{array}
$$

Any of these maps is known as a satellite operator.
If K_1 is concordant to K_2, then $P(K_1)$ is concordant to $P(K_2)$; this gives us maps

$$
\begin{array}{c}
C \rightarrow C^\text{ex} \rightarrow C^\mathbb{Z} \rightarrow C^\mathbb{Q} \\
\downarrow P \downarrow P \downarrow P \\
C^\text{ex} \rightarrow C^\mathbb{Z} \rightarrow C^\mathbb{Q}
\end{array}
$$

Any of these maps is known as a satellite operator.

Satellite operators are generally not group homomorphisms.
Definition

$P \subset S^1 \times D^2$ has winding number n if it represents n times a generator of $H_1(S^1 \times D^2)$.

Adam Simon Levine
Non-surjective satellite operators and PL concordance
Definition

- $P \subset S^1 \times D^2$ has winding number n if it represents n times a generator of $H_1(S^1 \times D^2)$.

- P has strong winding number 1 if the meridian $[\{\text{pt}\} \times \partial D^2]$ normally generates $\pi_1(S^1 \times D^2 \setminus P)$.
Theorem (L., 2014)

There exists a (strong) winding number 1 pattern $P \subset S^1 \times D^2$ such that $P(K)$ is not \mathbb{Z}–homology slice for any knot $K \subset S^3$ (including the unknot).
Non-surjective satellite operators

Theorem (L., 2014)

There exists a (strong) winding number 1 pattern $P \subset S^1 \times D^2$ such that $P(K)$ is not \mathbb{Z}–homology slice for any knot $K \subset S^3$ (including the unknot).

- It suffices to find a pattern Q such that $Q : C^\mathbb{Z} \to C^\mathbb{Z}$ is not surjective, and set $P = Q \# -J$ for $J \notin \text{im}(Q)$.
Proof of the main theorem

Let \(P \) be a winding number 1 pattern such that \(P(K) \) is not \(\mathbb{Z} \)-homology slice for any \(K \).
Proof of the main theorem

Let P be a winding number 1 pattern such that $P(K)$ is not \mathbb{Z}–homology slice for any K.

Let Y be the boundary of the Mazur-type manifold obtained from P, and let γ be the knot $S^1 \times \{\text{pt}\}$.
Proof of the main theorem

Let P be a winding number 1 pattern such that $P(K)$ is not \mathbb{Z}–homology slice for any K.

Let Y be the boundary of the Mazur-type manifold obtained from P, and let γ be the knot $S^1 \times \{\text{pt}\}$.

Suppose γ bounds a PL disk Δ in a contractible 4-manifold X with $\partial X = Y$. Can assume that Δ has singularities that are cones on knots $K_1, \ldots, K_n \subset S^3$.
Drill out arcs to see that $\gamma \not\# K$ bounds a smooth slice disk $\Delta' \subset X$, where $K = -(K_1 \not\# \cdots \not\# K_n)$.
Proof of the main theorem

- Drill out arcs to see that $\gamma \not\# K$ bounds a smooth slice disk $\Delta' \subset X$, where $K = -(K_1 \not\# \cdots \not\# K_n)$.
- Attach a 0-framed 2-handle along $\gamma \not\# K$ to obtain W, a homology $S^2 \times D^2$, whose H_2 is generated by an embedded sphere S with trivial normal bundle.
Proof of the main theorem

- Drill out arcs to see that $\gamma \not\# K$ bounds a smooth slice disk $\Delta' \subset X$, where $K = -(K_1 \not\# \cdots \not\# K_n)$.
- Attach a 0-framed 2-handle along $\gamma \not\# K$ to obtain W, a homology $S^2 \times D^2$, whose H_2 is generated by an embedded sphere S with trivial normal bundle.
- Surger out S to obtain W', a homology $D^3 \times S^1$.
Proof of the main theorem

- Drill out arcs to see that $\gamma \not\approx K$ bounds a smooth slice disk $\Delta' \subset X$, where $K = -(K_1 \not\approx \cdots \not\approx K_n)$.

- Attach a 0-framed 2-handle along $\gamma \not\approx K$ to obtain W, a homology $S^2 \times D^2$, whose H_2 is generated by an embedded sphere S with trivial normal bundle.

- Surge out S to obtain W', a homology $D^3 \times S^1$.

- Now $\partial W = \partial W' \cong S^3_0(P(K))$, and $H_1(W')$ is generated by λ.
Proof of the main theorem

Attach a 0-framed 2-handle along λ to obtain Z, a homology D^4. The belt circle μ of this 2-handle bounds a smoothly embedded disk (the cocore).
Proof of the main theorem

- Attach a 0-framed 2-handle along λ to obtain Z, a homology D^4. The belt circle μ of this 2-handle bounds a smoothly embedded disk (the cocore).
- The boundary of Z is S^3, and $\mu = P(K)$. Contradiction!
Let Q denote the Mazur pattern:
Proposition

For any knot $K \subset S^3$,

$$\tau(Q(K)) = \begin{cases}
\tau(K) & \text{if } \tau(K) \leq 0 \text{ and } \epsilon(K) \in \{0, 1\} \\
\tau(K) + 1 & \text{if } \tau(K) > 0 \text{ or } \epsilon(K) = -1
\end{cases}$$
Proposition

For any knot $K \subset S^3$,

$$\tau(Q(K)) = \begin{cases}
\tau(K) & \text{if } \tau(K) \leq 0 \text{ and } \epsilon(K) \in \{0, 1\} \\
\tau(K) + 1 & \text{if } \tau(K) > 0 \text{ or } \epsilon(K) = -1
\end{cases}$$

$$\epsilon(K) = \begin{cases}
0 & \text{if } \tau(K) = \epsilon(K) = 0 \\
1 & \text{otherwise}
\end{cases}$$
Non-surjective satellite operators

Proposition

For any knot $K \subset S^3$,

$$
\tau(Q(K)) = \begin{cases}
\tau(K) & \text{if } \tau(K) \leq 0 \text{ and } \epsilon(K) \in \{0, 1\} \\
\tau(K) + 1 & \text{if } \tau(K) > 0 \text{ or } \epsilon(K) = -1
\end{cases}
$$

$$
\epsilon(K) = \begin{cases}
0 & \text{if } \tau(K) = \epsilon(K) = 0 \\
1 & \text{otherwise}
\end{cases}
$$

Thus, if J is a knot with $\epsilon(J) = -1$ (e.g. the left-handed trefoil), then J is not homology concordant to $Q(K)$ for any K.

Adam Simon Levine
Non-surjective satellite operators and PL concordance
Proposition

For any knot $K \subset S^3$,

$$
\tau(Q(K)) = \begin{cases}
\tau(K) & \text{if } \tau(K) \leq 0 \text{ and } \epsilon(K) \in \{0, 1\} \\
\tau(K) + 1 & \text{if } \tau(K) > 0 \text{ or } \epsilon(K) = -1
\end{cases}
$$

$$
\epsilon(K) = \begin{cases}
0 & \text{if } \tau(K) = \epsilon(K) = 0 \\
1 & \text{otherwise}
\end{cases}
$$

Thus, if J is a knot with $\epsilon(J) = -1$ (e.g. the left-handed trefoil), then J is not homology concordant to $Q(K)$ for any K.

- Proof uses bordered Floer homology, with computations assisted by Bohua Zhan’s Python implementation of Lipshitz, Ozsváth, Thurston’s arc slides algorithm.
Corollary

For any knot K and any $m > 1$, $\tau(Q^m(K)) \not\in \{1, \ldots, m - 1\}$.
Corollary

For any knot K and any $m > 1$, $\tau(Q^m(K)) \notin \{1, \ldots, m - 1\}$. Therefore, the action of the Mazur satellite operator Q on C, C^{ex}, or $C^\mathbb{Z}$ satisfies

$$C \supsetneq \text{im}(Q) \supsetneq \text{im}(Q^2) \supsetneq \cdots$$
Corollary

For any knot K and any $m > 1$, $\tau(Q^m(K)) \not\in \{1, \ldots, m - 1\}$. Therefore, the action of the Mazur satellite operator Q on C, C^{ex}, or $C^{\mathbb{Z}}$ satisfies

$$C \supseteq \text{im}(Q) \supsetneq \text{im}(Q^2) \supsetneq \cdots$$

- Q has strong winding number 1, so by a theorem of Cochran, Davis, and Ray,

$$Q: C^{ex} \to C^{ex}$$

is injective.
Corollary

For any knot K and any $m > 1$, $\tau(Q^m(K)) \notin \{1, \ldots, m-1\}$. Therefore, the action of the Mazur satellite operator Q on C, C^ex, or $C^\mathbb{Z}$ satisfies

$$C \supsetneq \text{im}(Q) \supsetneq \text{im}(Q^2) \supsetneq \cdots$$

- Q has strong winding number 1, so by a theorem of Cochran, Davis, and Ray,

$$Q : C^\text{ex} \to C^\text{ex}$$

is injective.

- Hence, the iterates of Q are decreasing self-similarities of C^ex.